Half-Life ($t_{1/2}$)

The time required for [A]₀ to decrease by 50%

- <u>NOT</u> the time for half of the reaction to occur
- Provides another way to get the rate constant
- Symbol is t_{1/2}
- t_{1/2} depends on reaction order
- Can solve for t_{1/2} by plugging [A]₀ = 1 and [A] = ½ into rate equation

Half-Life of a First Order Reaction

Linear Equation: $In[A] = -kt + In[A]_0$ Rearranged Equation: $In \frac{[A]}{[A]_0} = -kt$ Plug in: $[A]_0 = 1\& [A] = \frac{1}{2}$

 $\ln(1/2) = -kt_{1/2}$

Solve for $t_{1/2}$:

 $t_{1/2} = \ln 2/k = 0.693/k$

For a <u>First Order</u> Reaction: $t_{1/2}$ is independent of initial reactant concentration If you know $t_{1/2}$, you know the rate constant

Summary of Kinetic Data

Order	Rate Law	Integrated Rate Law	Linear Plot	k	Half-life
0	Rate = k	$[A]_{t} = -\underline{kt} + [A]_{0}$	[A] vs. t	-slope	[A] ₀ /2k
1	Rate = k[A]	$\ln[A]_{t} = -\underline{kt} + \ln[A]_{0}$	ln[A] vs. t	-slope	0.693/k
2	Rate = $k[A]^2$	$1/[A]_{t} = kt + 1/[A]_{0}$	1/[A] vs. t	+slope	1/k[A] ₀

Half-life Examples

1. For a 1st order reaction, determine the time it will take for only 1/8 of a material to be left if $t_{\frac{1}{2}} = 3.47 \times 10^2 s$ A: 1.04×10³s

2. The reaction below is first order in $[H_2O_2]$: $2H_2O_2$ (I) $\rightarrow 2 H_2O$ (I) $+ O_2$ (g) A solution originally at 0.600M is found to be 0.075M after 54min. Determine the half-life. A: 18 min

3. The thermal decomposition of phosphine (PH_3) into phosphorus and molecular hydrogen is a first order reaction:

$$4PH_3 (g) \rightarrow P_4 (g) + 6 H_2 (g)$$

The half-life of the reaction is 35.0s at 680°C. Calculate (a) the first order rate constant for the reaction and (b) the time required for 95% of the phosphine to decompose. A: (a) 0.0198s⁻¹ (b) 151s

4. The rate constant for the second-order reaction $2 \text{ NO}_2(g) \rightarrow 2 \text{ NO}(g) + \text{O}_2(g)$

is 0.54 M⁻¹s⁻¹ at 300°C.

(a) How long, in seconds, would it take for the concentration of NO_2 to decrease from 0.62M to 0.28M?

A: 3.6s

(b) Calculate the half-lives at these two concentrations. A: 3.0s, 6.6s

Effect of Temperature on Reaction Rate: Arrhenius Equation

Arrhenius Equation – Shows how temp. affects the rate constant (k)

 $\mathbf{k} = \mathbf{A}\mathbf{e}^{-\mathbf{E}_{a}/\mathbf{R}\mathbf{T}}$ or $\mathbf{I}\mathbf{n}\mathbf{k} = (-\mathbf{E}_{a}/\mathbf{R}\mathbf{T}) + \mathbf{I}\mathbf{n}\mathbf{A}$

k = rate constant

A = frequency factor (based on collision frequency & the probability of correct orientation; constant for a given system) $E_a = activation energy$

R = gas constant in energy units (8.314 J mol⁻¹ K⁻¹)

T = temperature in Kelvin

Graphing In k vs. 1/T gives a straight line with slope = $-E_a/R$

Provides a method to determine E_a for a reaction

Arrhenius Equation Example Reaction: 2 $HI(g) \rightarrow H_2(g) + I_2(g)$

Step 1: Find k at several temps. Step 2: Graph In k vs. 1/T

Temp. (K)	k (M ⁻¹ s ⁻¹)		
283	3.52x10 ⁻⁷		
356	3.02x10 ⁻⁵		
393	2.19x10 ⁻⁴		
427	1.16x10 ⁻³		
508	3.95x10 ⁻²		

Step 3: Calculate slope (= $-E_a/R$) Step 4: Multiply slope by -R to get E_a

2 –Point Arrhenius Equation Example Use rate constants at just 2 temps to solve for E_a

- This method is less accurate but only requires 2 k values
- Best to use only if there is limited data
- Equation: $\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} \frac{1}{T_1} \right)$ Note: $\ln(k_1/k_2) = \ln k_1 - \ln k_2$

Find E_a for the reaction: $2HI(g) \rightarrow H_2(g) + I_2(g)$

```
Data:

k_1 = 0.0395 \text{ M}^{-1}\text{s}^{-1}

T_1 = 508 \text{ K}
```

```
\begin{array}{l} k_2 \,=\, 0.00116 \,\, M^{-1} s^{-1} \\ T_2 \,=\, 427 \,\, \text{K} \end{array}
```

 $E_a = 78.5 \text{ kJ/mol} - \text{note difference from previous slide}!$

More uses of the Arrhenius Equation

1. The activation energy of a certain reaction is 31.5 kJ/mol. At 30°C, the rate constant is 0.0190 s⁻¹. At what temperature in degrees Celsius would this reaction go twice as fast?

2. The gas-phase reaction $Cl(g) + HBr(g) \rightarrow HCl(g) + Br(g)$ has an overall enthalpy change of -66kJ. The activation energy for the reaction is 7 kJ.

(a) Sketch the energy profile for the reaction, and label E_a and ΔE .

(b) What is the activation energy for the reverse reaction? A: 73 kJ 3. On the basis of the frequency factors and activation energy values of the following two reactions, determine which one will have the larger rate constant at room temperature (298K). A: second reaction

$$O_{3}(g) + O(g) \rightarrow O_{2}(g) + O_{2}(g)$$

$$A = 8.0 \times 10^{-12} \text{ mL/mol-s} \qquad E_{a} = 17.1 \text{ kJ/mol}$$

$$O_{3}(g) + CI(g) \rightarrow CIO(g) + O_{2}(g)$$

 $A = 2.9 \times 10^{-11} \text{ mL/mol-s}$ $E_a = 2.16 \text{ kJ/mol}$

Reaction Mechanism: What (we think) actually happens during a reaction

Series of elementary reactions that lead to an overall rxn

Mechanism info can be used to modify reactions to increase yield, speed, etc.

Ex: 2 NO(g) + $O_2(g) \rightarrow 2NO_2(g)$ $_{2NO(g) \longrightarrow N_2O_2(g)}$

 $N_2O_2(g) \longrightarrow 2NO_2(g)$

$\bigcirc \bigcirc \rightarrow \bigcirc \bigcirc \bigcirc$

N_2O_2 is detected during the reaction!

Elementary Step: $NO + NO \rightarrow N_2O_2$ + Elementary Step: $N_2O_2 + O_2 \rightarrow 2NO_2$ Overall Reaction: $2NO + O_2 \rightarrow 2NO_2$

Some Terminology: Molecularity Number of molecules reacting in an elementary step

Unimolecular - one

- Fastest
- Molecule simply breaks apart
- No molecular alignment needed

Bimolecular - two

- Most common
- May require correct alignment

Termolecular - three

- Usually rate limiting (slow!)
- Low probability that all 3 particles will collide simultaneously (esp. with correct alignment and energy)

Rate Determining Step: Slowest step in the sequence of steps leading to the overall reaction

• Often determined by molecularity

Rate Laws & Intermediate Steps

Unimolecular reaction: Bimolecular reaction: Bimolecular reaction: A → Products rate = k[A] A + B → Products rate = k[A][B] A + A → Products rate = k[A]²

Writing reaction mechanisms:

- The sum of the elementary reactions <u>must</u> give the overall balanced equation for the reaction.
- The rate-determining step should predict the same rate law that is determined experimentally
- The rate law for each step is found from the coefficients of the reactants. <u>This is ONLY true for ELEMENTARY reactions!</u>

Developing a Reaction Mechanism

Measure the rate of the reaction:

- Run a set of isolation method experiments
 - Run 1 experiment for each reactant + a control
 - Measure [A] vs. time

Formulate the rate law

- Determine the order of each reactant based on data
- Use the results to calculate an average value for k
- Determine the overall rate of the reaction

Suggest a reaction mechanism

- Elementary steps must match stoichiometry of overall rxn
- Use molecularity to determine rate determining step
- Order of rate-determining step must match overall rxn order

Ex: Developing a Reaction Mechanism for $NO_2 + CO \rightarrow NO + CO_2$

Based on the results of a set of isolation method experiments, the overall rate was found to be:

Rate = $k[NO_2]^2$

Suggested reaction mechanism:

- Need to account for rate being 2nd order in NO₂
- Need to account for rate being zero order in CO

Step1: $NO_2 + NO_2 \rightarrow NO + NO_3$ rate = $k[NO_2]^2$

Step2: $NO_3 + CO \rightarrow NO_2 + CO_2$ rate = k[NO₃][CO]

$NO_2 + CO \rightarrow NO + CO_2$

Step 1 would be the rate-determining step, because the rate matches the overall reaction rate.

You might also be asked to evaluate possible mechanisms.

Evaluating Mechanisms Ex: $H_2 + 2ICI \rightarrow 2HCI + I_2$ Rate = k[H₂][ICI] Option #1 Option #2 Step 1: ICl + ICl \rightarrow I₂ + Cl₂ (slow) Step 1: $H_2 + ICl \longrightarrow HI + HCl$ (slow) Step 2: $ICl + HCl \longrightarrow HI + Cl_2$ Step 2: $Cl_2 + H_2 \longrightarrow 2HCl$ $ICl + ICl \longrightarrow I_2 + Cl_2$ (slow) $H_2 + ICl \longrightarrow HI + HCl (slow)$ $\frac{\text{ICl} + \text{HCI} \longrightarrow \text{HI} + \text{Cl}_2}{\text{Sum: H}_2 + 2\text{ICl} \longrightarrow 2\text{HI} + \text{Cl}_2}$ $Cl_2 + H_2 \longrightarrow 2HCl$ Sum: $H_2 + 2ICl \longrightarrow 2HCl + I_2$ Rate = $k[H_2][IC1]$ Rate = $k[IC1]^2$ Option #4 Option #3 Step 1: $H_2 \longrightarrow 2H$ (slow) Step 1: $H_2 + ICl \longrightarrow HCl + HI$ (slow) Step 2: $ICl + H \longrightarrow HCl + I$ Step 2: $HI + ICI \longrightarrow HCI + I_2$ Step 3: $H + I \longrightarrow HI$ $H_2 + ICl \longrightarrow HCl + \mathcal{H}I$ (slow) $H_2 \longrightarrow 2 \mathcal{H}$ (slow) $HI + ICl \longrightarrow HCl + I_2$ $\mathrm{ICl} + \mathscr{H} \longrightarrow \mathrm{HCl} + \mathscr{I}$ Sum: $H_2 + 2ICl \longrightarrow 2HCl + I_2$ $H + I \longrightarrow HI$ Rate = $k[H_2][IC1]$ Sum: $H_2 + ICI \rightarrow HCI + HI$ Rate = $k[H_2]$

Catalysis

Catalysts alter the rate of a chemical reaction

- Not part of the overall reaction (not a reactant or product)
- Often work by lowering activation energy
 - Since less energy is needed, rate increases
- Materials that slow reaction rates are called inhibitors

Heterogeneous catalysts

- In a different phase than the reacting medium
- Solids often used to catalyze reactants in solution
- Often used as a surface to align molecules correctly
- Benefit often easy to remove & re-use

Homogeneous catalysts

- In the same phase as the reacting medium
- May have larger impact on rate (may be able to create a lower energy activated complex than heterogeneous)

Effect of a Catalyst on Reaction Profile & Activation Energy

Effect of a Catalyst on Reaction Profile & Activation Energy

Enzymes

Enzymes

- Control the rate of biological reactions
- Very specific
 - Only act on specific molecules called **substrates**
- Often proteins shape determines functionality
 - Partially due to hydrogen bonding (CHM101!)
- Some enzymes also act as inhibitors

Catalysts & Reaction Mechanisms

When considering mechanisms:

- Catalysts control the rate of the reaction.
- The rate of the elementary step that involves the catalyst will control the observed rate.
- Rate constant is different from the rate constant without the catalyst – called the catalytic rate constant.