

Quantum Theory & the Electronic Structure of Atoms

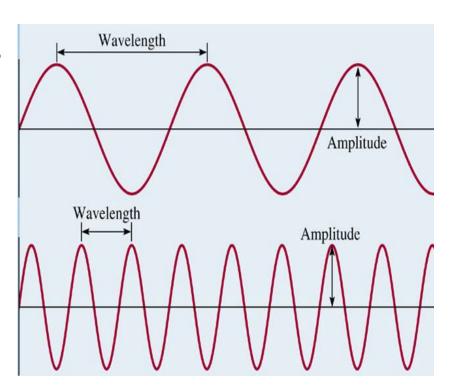
http://clipart-library.com

Wave Theory

Wave

- Repeating disturbance spreading out from a defined origin
- Characterized by wavelength, frequency and amplitude

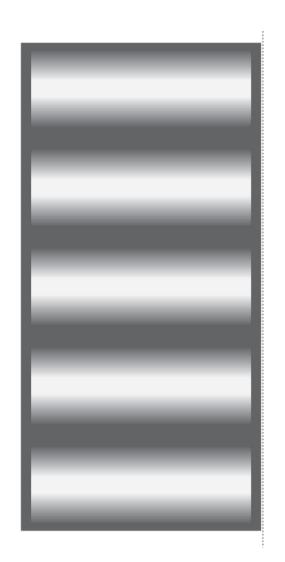
Wavelength (λ)


- Distance between identical pts
- Units some form of meters

Frequency (v)

- Number of waves that pass through a point in 1 second
- Units of cycles/sec or Hz (s⁻¹)

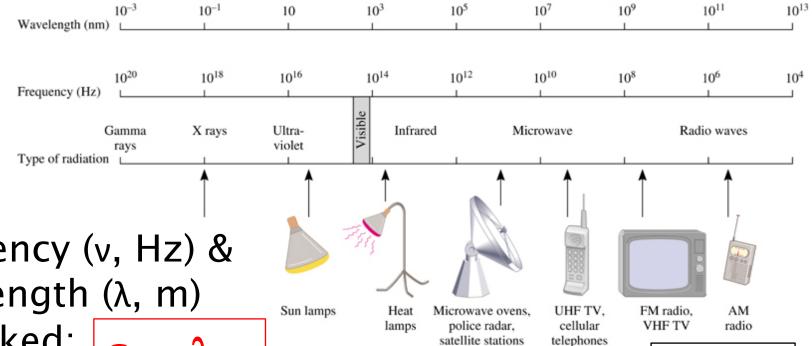
Amplitude


- Height of wave from center point
- Intensity of wave

Wave Theory

Waves exhibit interference:

- When light passes through two narrow openings very close to each other, a pattern of light and dark lines is formed
- The lines of light are from constructive interference (the high and low points of the waves line up with each other)
- The lines of darkness are from destructive interference (the peak of one wave lines up with the trough (bottom) of another wave, etc.)
- Interference patterns are evidence of light properties



Electric field component

Electromagnetic Radiation

Electromagnetic Radiation

- Emission/transmission of energy
- In form of waves
- Has electrical & magnetic components / Magnetic field component
- Travels at the speed of light (c= 3.00 x 108 m/s)

Frequency (v, Hz) & wavelength (λ, m) are linked:

$$c = \lambda v$$

Using the relationship $c = \lambda v$:
What is the wavelength of an FM-radiowave with a 94.9 MHz frequency?

Max Planck's Quantum Theory

Studied energy emitted by objects (blackbody radiation)

 Amount of energy emitted was directly related to wavelength at which energy was emitted

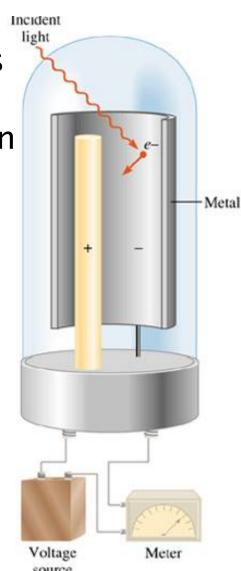
Theory: Energy is emitted/absorbed in discrete bundles

- Amounts were defined by λ (& ν they are related!) $E = h\nu = hc/\lambda$
- Can have multiples of these discrete amounts E = hv, E = 2hv, E = 3hv ...
- $h = Planck's constant = 6.626 \times 10^{-34} J s$

Called the smallest amount of energy a Quantum.

Didn't know why energy was quantized, but math worked over entire spectrum of wavelengths

Einstein and the Photoelectric Effect


Experiment to prove why E = hv

- Light hits metal surface causing electrons to break free
- Light energy must be at or above a certain
- frequency to dislodge electrons
- Intensity of light determines number of electron dislodged
- Intensity of light does not impact energy of dislodged electrons

Conclusion:

Light energy has particle properties in addition to wave properties

Particles of light were later called "photons"

Using $E = hv (h = 6.626 \times 10^{-34} Js)$

What is the energy of a radiowave with a frequency of 94.9 MHz? A: $6.29 \times 10^{-26} \text{J}$

What wavelength has an energy of 1.00×10^{-20} J?

A: 1.99 x 10⁻⁵ m Or 19.9 μm

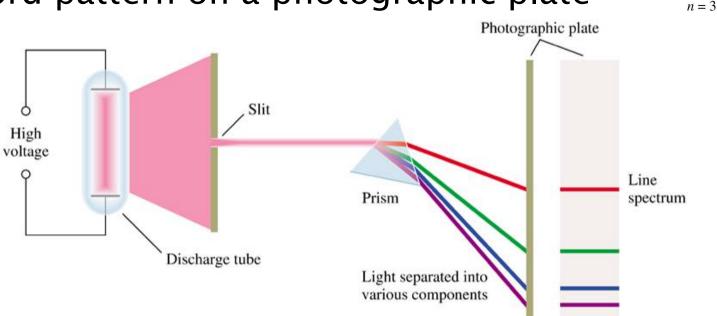
Using $E = hv (h = 6.626 \times 10^{-34} Js)$

What is the energy per photon and per mole of photons of violet light, with a wavelength of 415 nm?

A: $4.79 \times 10^{-19} \text{ J/photon}$

A: 2.88 x 10⁵ J/mol

Photon


n = 1

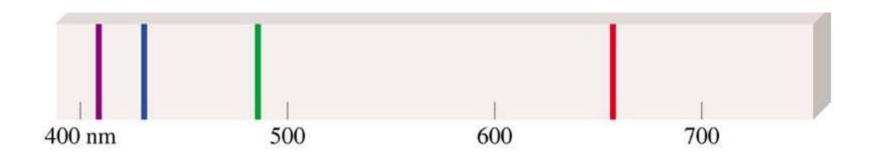
Elemental Line Spectra

Emission Spectra: Pattern of radiation that is emitted when photons are released from a substance.

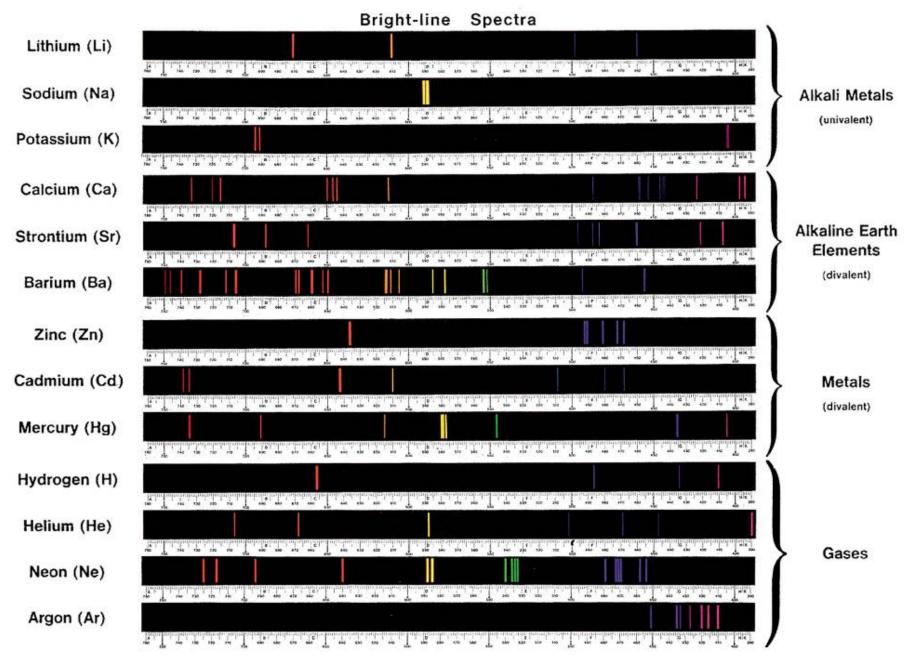
Procedure

- Add energy to an element
- Photons are emitted as a beam of light
- Separate wavelengths through a prism
- · Record pattern on a photographic plate

Continuous vs. Line Spectra


Continuous spectrum:

- Occurs when all visible light is present: white light



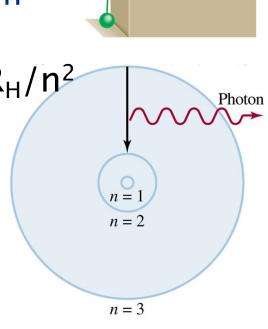
Line Spectrum

- Occurs when light is produced through an element
- Pattern of lines is characteristic of the element
- Can be used for identification of elements

Elemental Line Spectra

Bohr's Hydrogen Atom

Niels Bohr (1913): Electron energy (E_n) was quantized

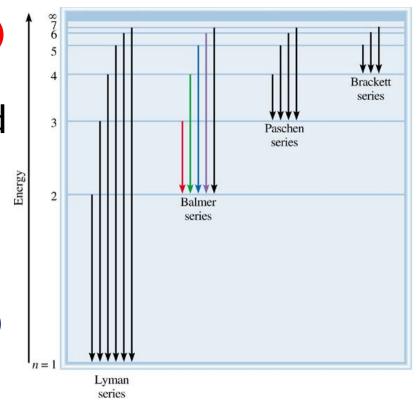

- Similar to light/photons
- Only certain specified values allowed
- Stable levels called energy levels
- Photon absorbed/released when electron moves from 1 level to another

- *n* is the quantum number of the level
- *n* is always an integer, 1,2,3,...etc.

Proportionality constant R_H

- Rydberg constant
- $R_H = 2.18 \times 10^{-18} J$

Leads to orbit description of atoms – we know today this is not accurate


Energy Level Calculations

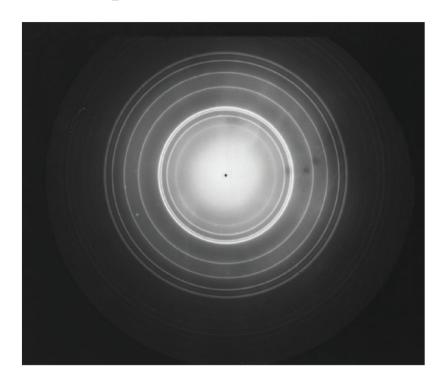
All calculations done by comparing energy levels

- Electron moves between levels
- E = $-R_H (1/n_f^2 1/n_i^2)$

Energy emitted or absorbed

- High to low level:
 - energy released (-)
- Low to high level:
 - energy absorbed (+)

Ground state: An e-'s lowest possible energy level

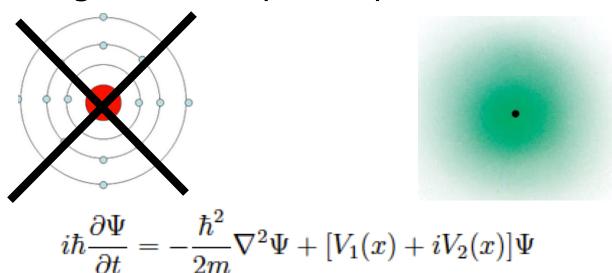

Excited state: All other levels

Calculate the wavelength of the electron shift from n = 4 to n = 2. Is light emitted or absorbed?

$$\Delta E = -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$
 $R_H = 2.18 \times 10^{-18} \text{ J}$

A: $\lambda = 486$ nm Visible blue green light is emitted (neg E value)

Wave Properties of Electrons



- de Broglie predicted that electrons should have wave properties
- Davisson & Germer successfully showed that electrons produce diffraction patterns like x-rays

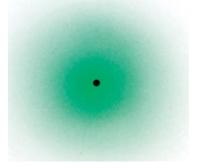
Electrons, like light, are both particles & waves

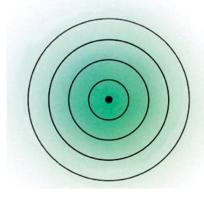
Modern View of the Atom: Quantum Mechanics – a very brief intro

- (Nucleus in center, protons & neutrons in nucleus)
- Electrons outside nucleus
 - located in "cloud" surrounding the nucleus
 - likely location based on probability functions
 - quantum numbers used to describe probable location
 - impossible to know both position and velocity (momentum) of an electron at the same time (Heisenberg Uncertainly Principle)

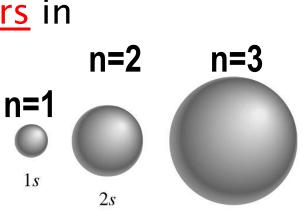
Quantum Numbers and Atomic Orbitals

Atomic orbital


- A region in space with a high probability of finding an electron (high electron density).
- Identified by 4 quantum numbers.


4 Quantum Numbers (think of it as a dorm address)

- 1. Principal quantum number (n): Building
- 2. Angular momentum quantum number (1) Floor
- 3. Magnetic quantum number (m_I) Room #
- 4. Electron spin quantum number (m_s) Bed


The Principal Quantum Number (n)

- Restricted to the positive integers: 1, 2, 3, 4, 5, 6, 7
- The shell or energy level of the orbital

- Indicates the size of the orbital
 - max distance e can travel from nucleus
- Integers correspond to <u>row numbers</u> in Periodic Table
 - row an element is in tells you the highest energy level in the ground state

The Angular Momentum Quantum Number (1)

- Indicates orbital shape
 - Designation: s, p, d or f

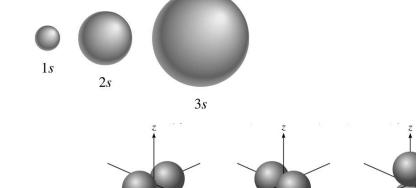
<i>l</i> evel	0	1	2	3
Name	S	р	d	f

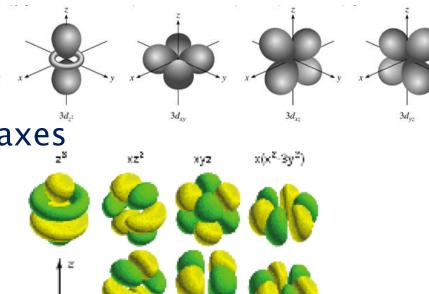
- Designates the subshell
 - Values range from 0 to n-1
 - 0-6 theoretically, but realistically 0-3
 - Give rise to "Blocks" in periodic table

Energy Level (n)	Math	Allowed <i>l</i> values	Orbitals
1	1-1 = 0	0	s only
2	2-1 = 1	0, 1	s & p
3	3-1 = 2	0, 1, 2	s, p, & d

Orbital Shapes = \ell quantum number

lanl.gov


- $\ell = 0$: s orbitals
 - Spherical
 - **One** per energy level


$\ell = 1: p$ orbitals

- 2 teardrops joined at center
- Three per energy level

$\ell = 2$: d orbitals

- Most are like two
 p orbitals along different axes
- 5 per energy level
- $\ell = 3$: f orbitals.
 - Complicated shapes
 - 7 per energy level

The Magnetic Quantum Number (m_l) :

Determines the orientation in space of the orbitals

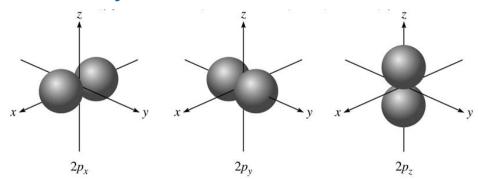
- "orientation" refers to proximity to axes (x, y, z)
- Integers from ℓ to + ℓ

Determines the <u>number</u> of orbitals in a subshell

• The number of possible values for $m_{\ell} = 2\ell + 1$

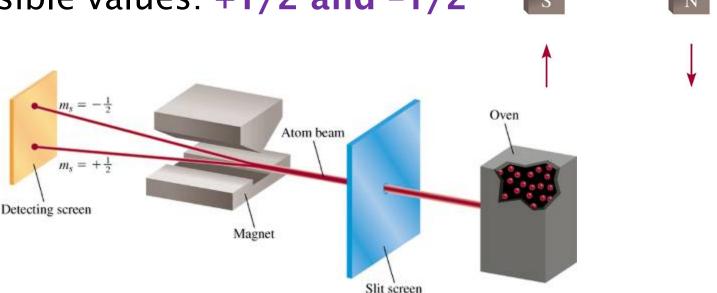
Orbital	ℓ value	Allowed m _ℓ values	Number of Orbitals per Energy Level
S	0	0	1
р	1	-1, 0, 1	3
d	2	-2, -1, 0, 1, 2	5
f	3	-3, -2, -1, 0, 1, 2, 3	7

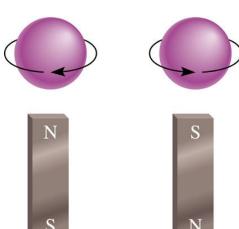
Orbitals with same n & l values are "degenerate"


degenerate = same energy

(Note: In some cases there are slight energy differences)

Possible quantum numbers for an electron in a 4p orbital:


$$n=4$$
 ℓ can be 0 to 4-1 (0, 1, 2, 3) BUT if it is a p orbital $\ell=1$ m_{ℓ} can be $+\ell$ to $-\ell=-1$, 0, $+1$


Since the three 4p orbitals are degenerate, any of the three m_{\ell} values could be correct

Electron Spin Quantum Number (m_s)

- A magnetic field is induced by the moving electric charge of an electron as it spins
 - Opposite spins cancel one another
 - No net magnetic field for the pair
 - Allows 2 electrons to occupy 1 orbital
 - Unpaired e lead to magnetism
- Two possible values: +1/2 and -1/2

Quantum Numbers Summary

TABLE 3.2

Allowed Values of the Quantum Numbers n, ℓ , and m_{ℓ}

When n is	ℓ can be	When P is	$m_{\mathscr{C}}$ can be
1	only 0	0	only 0
2	0 or 1	0 1	only $0 - 1$, 0 , or $+1$
3	0, 1, or 2	0 1 2	only 0 -1 , 0, or +1 -2 , -1, 0, +1, or +2
4	0, 1, 2, or 3	0 1 2 3	only 0 -1, 0, or +1 -2, -1, 0, +1, or +2 -3, -2, -1, 0, +1, +2, or +3

A possible set of quantum numbers for the last electron added to complete an atom of selenium would be:

n:

!:

 m_l :

ms: