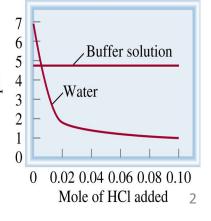
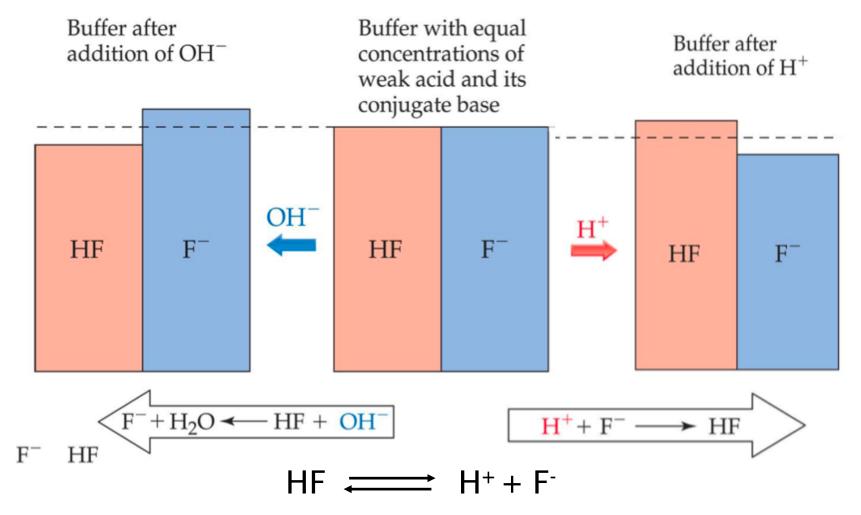
Chapter 17

Acid - Base Equilibria & Solubility Equilibria

Buffer Solutions (Buffers)


Solutions that resist changes in pH when small amounts of acid or base are added

- Must contain a <u>weak</u> acid or base <u>and</u>
- The conjugate (salt) of the weak acid or base
- i.e. Contain a weak conjugate acid/base pair
- pH is controlled by equilibrium $[K_a \text{ (or } K_b)]$ $HA + H_2O \longrightarrow H_3O^+ + A^-$



When small amounts of a strong acid or base are added:

- Acidic species in buffer neutralizes added OH⁻
 - $HA + OH^{-} \longleftrightarrow H_{2}O + A^{-}$
- Basic species in buffer neutralizes added H⁺
 - $A^{-} + H_3O^{+} \longrightarrow H_2O + HA$

How Buffers Work - Le Châtelier's Principle

- Add OH-, reduce H+, shift equilibrium toward conj. Base
 - OH⁻ will react with H⁺ to form water
- Add H+, shift equilibrium toward undissociated acid

Henderson-Hasselbalch Equation

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

Comes from the equilibrium expression for: $HA \longrightarrow H^+ + A^-$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$
 \longrightarrow $K_a = [H^+]\frac{[A^-]}{[HA]}$

Take the -log of both sides:

e -log of both sides:

$$-log K_a = -log [H^+] + -log \frac{[A^-]}{[HA]}$$
acid
$$pK_a$$

$$pH$$
For bases:

Therefore:

$$pK_a = pH + -log \frac{[A^-]}{[HA]}$$

For bases: $pOH = pK_b + -log \frac{[BH^+]}{[B]}$

Rearrange to get Henderson-Hasselbalch

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$

Ice Table Method

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$

H-H equation method:

Using the Henderson-Hasselbalch Equation

2. How many grams of sodium lactate (CH₃CH(OH)COONa) should be added to 1.0L of a 0.150M lactic acid (CH₃CH(OH)COOH) to form a buffer solution with pH=4.00? $K_a = 1.4 \times 10^{-4}$; molar mass of sodium lactate = 112.1g/mol

Buffer Capacity

Buffer Capacity: The amount of acid or base a buffer can neutralize before there is a significant change in pH.

- Ratio of weak base to weak acid ([A⁻]/[HA]) should be between 0.1 & 10.
- Most effective when [A⁻] = [HA] (i.e. ratio = 1)
 - Equal ability to neutralize acids & bases
- Buffer capacity depends on:
 - K_a of the acid
 - Concentration of buffer components
 - More concentrated = higher capacity

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

pH Range

pH Range: The range of pH values over which a buffer system works effectively

- Best to choose an acid with a pK_a close to the desired pH
- If $[A^-] = [HA]$, then $pH = pK_a$

$$pH = pK_a + log [HA] log (1) = 0$$

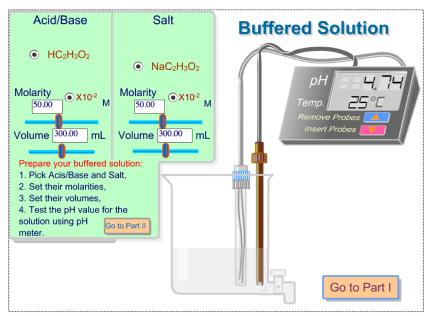
Buffer generally usable withing ± 1 pH unit of the pK_a

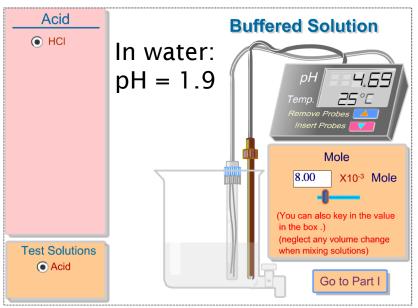
Criteria for Making a Buffer

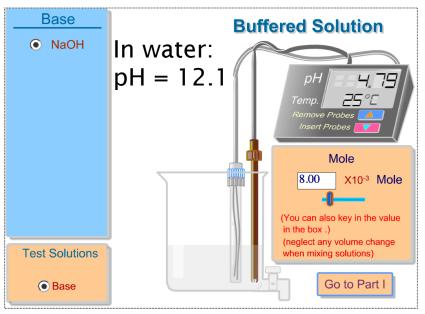
1. Choose a weak acid & conjugate base

- Must have the same anion!
 - ex. HNO₂ & NaNO₂; HF & LiF

2. Select acid based on desired pH range


- $pK_a < 7$ buffer is acidic; $pK_a > 7$ buffer is basic
- Buffers can usually be adjusted to ±1 desired pH


3. Buffer salts (conjugate base) must be soluble & dissociate completely


- Most commonly sodium or potassium salts
- NH₄+ salts are acidic because NH₄+ dissociates

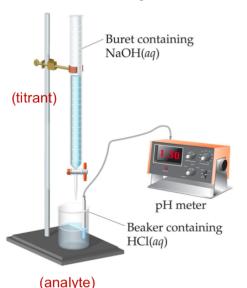
4. Concentrations of [HA] & $[A^{-}] > 0.01M$

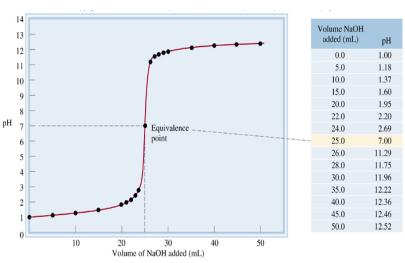
- Must be able to neutralize sufficient acid/base
- Can use ICE table to get an idea of what concentration is needed.

https://pages.uoregon.edu/tgreenbo/pHbuffer20.html

1. A 1.0 L buffer solution contains 0.150 M nitrous acid and 0.200 M sodium nitrite. $K_a=7.2\times10^{-4}$ (a) What is the pH of the buffer? (b) What is the pH after adding 1.00 g HBr?

- 2. A buffer is made by adding 0.600 mol CH_3COOH and 0.600 mol CH_3COONa to enough water to make 2.00L of solution. $K_a = 1.8 \times 10^{-5}$.
- (a) What is the pH of the buffer? A: 4.74
- (b) Calculate the pH after 0.040 mol HCl is added. A: 4.69
- (c) Calculate the pH after 0.040 mol NaOH is added. A: 4.80

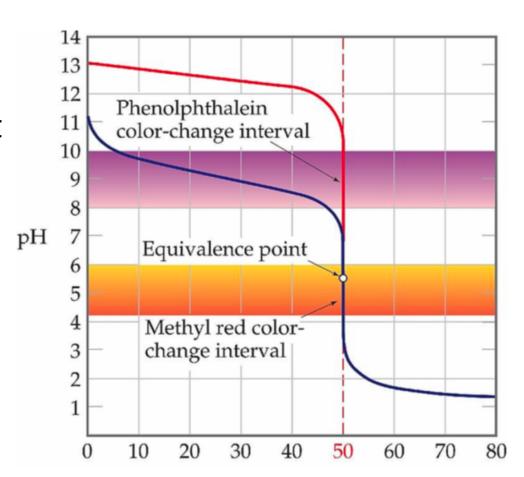

- 2. A buffer is made by adding 0.600 mol CH_3COOH and 0.600 mol CH_3COONa to enough water to make 2.00L of solution. $K_a = 1.8 \times 10^{-5}$.
- (a) What is the pH of the buffer? A: 4.74
- (b) Calculate the pH after 0.040 mol HCl is added. A: 4.69


- 2. A buffer is made by adding 0.600 mol CH_3COOH and 0.600 mol CH_3COONa to enough water to make 2.00L of solution. $K_a = 1.8 \times 10^{-5}$.
- (a) What is the pH of the buffer? A: 4.74
- (c) Calculate the pH after 0.040 mol NaOH is added. A: 4.80

Titration

A technique where a known concentration of acid (or base) is added to a solution of base (or acid).

- Used to determine the concentration of an unknown
- In CHM 101 we looked at <u>strong</u> acid/base systems
 - No equilibrium
 - Equivalence point is pH 7
- Indicators or pH meters are used to determine the equivalence point.



Titration Terminology

Equivalence Point:

Point at which the stoichiometric amount of acid and base are equal.

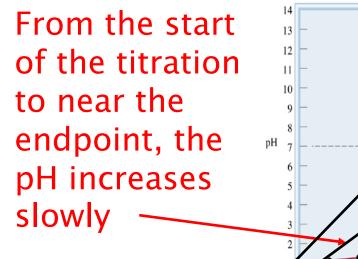
End Point: Point in the titration where the indicator changes color.

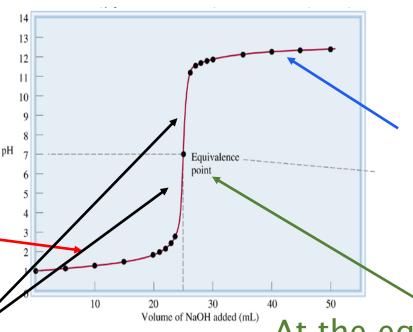
Solving More Complex Titration Problems

1. Read the question carefully to see what it is asking

- pH or concentration at a particular point
- Moles or molarity of original solution
- pH or volume at equivalence point

2. Identify all reactants and products


- Write the balanced equation
- Use stoichiometry to determine amounts of products
- · Identify whether the solution is acidic or basic


3. Determine whether it is an equilibrium process

- You will have at most one equilibrium
- Strong acids/bases just stoichiometry
- Weak acids/bases stoichiometry + equilibrium
- 4. Volume increases during titrations so be aware that there will likely be changes in concentration due to volume as well as due to the neutralization reaction.

Titration of a Strong Acid with a Strong Base

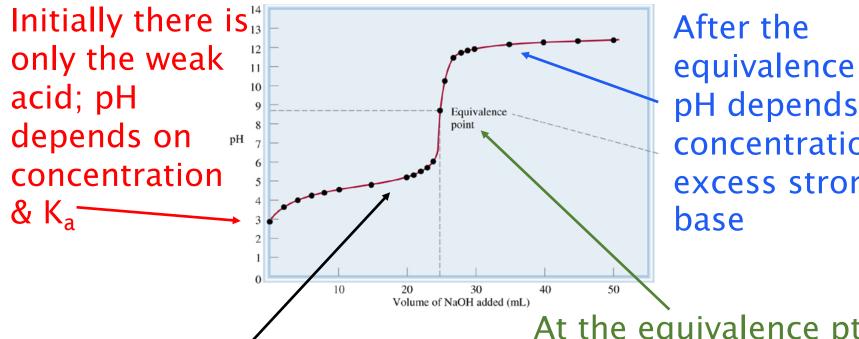
NaOH(aq) + HCl(aq)
$$\rightarrow$$
 NaCl(aq) + H₂O(l)
OH⁻(aq) + H⁺(aq) \rightarrow H₂O(l)

As more base is added, the increase in pH again levels off

Just before (and after) the equivalence point, the pH increases rapidly

At the equivalence point, moles acid = moles base Solution contains only water and salt (neutral)

Both strong = NO EQUILIBRIUM

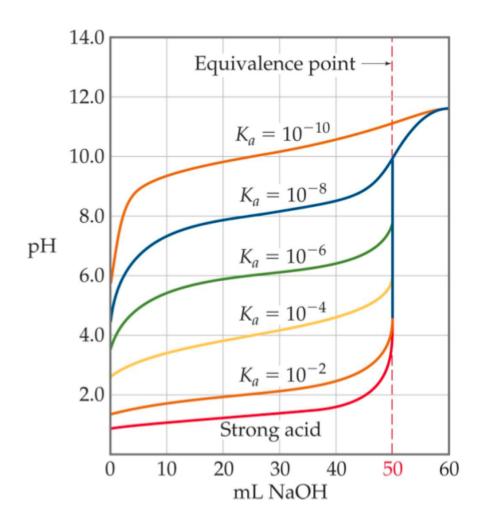

Strong Acid/Strong Base Calculations

In the titration of 25.0mL of 0.100M KOH with 0.100M HNO₃, determine the pH:

- (a) At the start of the titration (no acid added) A:13.0
- (b) When 24.9mL acid has been added A: 10.3
- (c) When 25.1mL acid has been added A: 3.7

Titration of a Weak Acid with a Strong Base

NaOH(aq) + CH₃COOH(aq)
$$\rightleftharpoons$$
 CH₃COONa(aq) + H₂O(I)
CH₃COO⁻(aq) + H₂O(I) \rightleftharpoons CH₃COOH(aq) + OH⁻(aq)



equivalence pt., pH depends on concentration of excess strong

Before the equivalence pt., the solution contains both the weak acid & its conjugate base At the equivalence pt. (moles acid = moles base) pH is >7 because the conjugate base of the acid affects the pH

pH depends on stoichiometry & Equilibrium!

Titration of a Weak Acid with a Strong Base

With weak acids:

- Initial pH is higher
- pH changes near the equivalence point are more subtle (smaller)
- pH > 7 at equivalence point due to the formation of a basic salt (conjugate base of weak acid; ex: CH₃COONa

Weak Acid/Strong Base Calculations Things to Keep in Mind

- 1. Acid/Base titration always gives a salt & water
 - $HA + OH \longrightarrow A^{-} + H_{2}O$
- 2. Initial pH only depends on the weak acid
 - K_a/equilibrium & concentration
- 3. Addition of base up to just before equivalence point
 - · Added base is strong not the conjugate of the weak acid
 - Solution contains weak acid & its conjugate base (salt) all
 of the strong base is used up in the neutralization
 - First use stoichiometry to determine how many moles of the acid have been neutralized
 - Determine the new concentration of acid based on moles remaining and new volume (if base is added as a solution)
 - Use the equilibrium expression to determine $[H_3O^+]$ (can also use H-H if want pH)
- 4. Whether or not volume increases depends on added base if the base is in solution, volume increases

Weak Acid/Strong Base Calculations Things to Keep in Mind con't

4. At equivalence point: <u>all initial acid & added base are</u> <u>neutralized</u> - the solution only contains the salt

- The salt will be basic it is the product of a weak acid & a strong base
- The basic salt will react with water to produce OH⁻
- $A^- + H_2O \Longrightarrow HA + OH^-$
- Since the solution is basic need to use K_b & equilibrium to get the OH⁻ concentration
- Moles acid neutralized = initial moles acid = moles salt formed.
- Use total volume to get concentration.

5. After equivalence point: <u>only excess strong base</u> matters

 pH depends on moles of excess strong base & total volume. Strong so NO EQUILIBRIUM!

35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

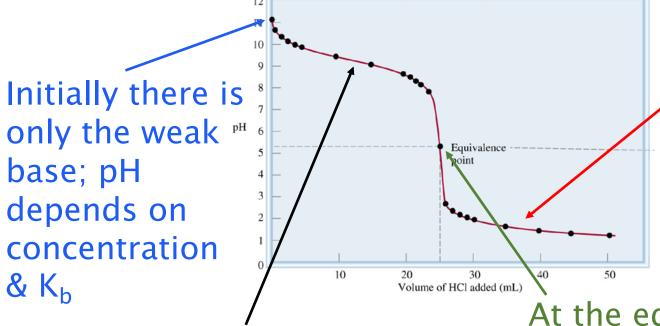
- a.) At the start of the titration A: 2.78
- b.) When 20.0mL of 0.150M NaOH has been added A:4.87
- c.) At the equivalence point A: 8.81
- d.) When 50.0mL of 0.150M NaOH has been added A: 12.42

35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

b.) When 20.0mL of 0.150M NaOH has been added A:4.87

35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

c.) At the equivalence point A: 8.81


35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

d.) When 50.0mL of 0.150M NaOH has been added A: 12.42

When 100.0 mL of 0.10 M HNO₂ are titrated with a 0.10 M NaOH solution, what is the pH at the equivalence point? K_a HNO₂ = 4.5 x 10⁻⁴

Titration of a Weak Base with a Strong Acid

$$HCI(aq) + NH_3 (aq) \longrightarrow NH_4^+ (aq) + CI^-(aq)$$

 $NH_4^+(aq) + H_2O(I) \longrightarrow NH_3 (aq) + H_3O^+(aq)$

After the equivalence pt., pH depends on concentration of excess strong acid

Before the equivalence pt., the solution contains the weak base & its conjugate acid At the equivalence pt.

(moles acid = moles base)

pH is < 7 because the

conjugate acid of the

base affects the pH

pH depends on stoichiometry & Equilibrium!

Weak Base/Strong Acid Calculations

30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCl. Determine the pH:

- a.) At the start of the titration A: 10.87
- b.) When 20.0mL of 0.0250M HCl has been added A: 9.16
- c.) At the equivalence point A: 5.56
- d.) When 37.0mL of 0.025M HCl has been added A: 3.43
 - a.) At the start of the titration (no acid added) just a solution of a weak base pH depends on concentration & equilibrium

NH₃ (aq) + H₂O (I)
$$\rightleftharpoons$$
 NH₄+(aq) + OH⁻(aq)

I 0.03M

0 $K_b = \frac{x^2}{0.0300} = 1.8 \times 10^{-5}$

C $-x + x + x$
E $0.03-x$
 $x x$

$$x^2 = 5.4x10^{-7}$$
 pOH = -log (7.35x10⁻⁴) = 3.13

$$x = 7.35 \times 10^{-4} = [OH^{-}]$$
 $pH = 14 - 3.13 = 10.87$

Weak Base/Strong Acid Calculations

30.0 mL of 0.0300M NH_3 ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250 M HCl. Determine the pH:

- b.) When 20.0mL of 0.0250M HCl has been added A: 9.16
- All added HCl is used in the titration need to determine how much NH₃ remains & how much NH₄+ has been produced.

NH₃ (aq) + HCl (aq)
$$\rightarrow$$
 H₂O(l) + Cl⁻(aq) + NH₄⁺(aq)
 $0.0300 \frac{mol}{L} NH_3 \times 0.0300L = 9.00 \times 10^{-4} mol \ NH_3 \ initial$
 $0.0250 \frac{mol}{L} \times 0.0200L = 5.00 \times 10^{-4} mol \ HCl \ added$

$$5.00x10^{-4}mol\ HCl\ x\ \frac{1\ mol\ NH_3}{1\ mol\ HCl} = 5.00x10^{-4}mol\ NH_3\ neutralized$$

 $9.00x10^{-4}mol\ init. -5.00x10^{-4}mol\ neut. = 4.00x10^{-4}mol\ NH_3\ remaining$

$$5.00x10^{-4}mol\ HCl\ x\ \frac{1\ mol\ NH_4^+}{1\ mol\ HCl} = 5.00x10^{-4}mol\ NH_4^+\ produced$$

New volume: 0.0300L + 0.0200L = 0.0500L

 $4.00 \times 10^{-4} \text{mol NH}_3 / 0.0500 \text{L} = 8.00 \times 10^{-3} \text{M NH}_3$

 $5.00 \times 10^{-4} \text{ mol NH}_4^+ / 0.0500 \text{L} = 1.00 \times 10^{-2} \text{M NH}_4^+$

$$4.00 \times 10^{-4} \text{mol NH}_3 / 0.0500 \text{L} = 8.00 \times 10^{-3} \text{M NH}_3$$

 $5.00 \times 10^{-4} \text{ mol NH}_4^+ / 0.0500 \text{L} = 1.00 \times 10^{-2} \text{M NH}_4^+$

New equilibrium with NH₃ & NH₄⁺ present:

$$NH_{3} (aq) + H_{2}O (I) \longleftrightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$$
 $I = 0.008M = 0.01M = 0$
 $C = -x = +x = +x$
 $E = 0.008-x = 0.01 + x = x$

$$K_b = \frac{(0.01)(x)}{0.008} = 1.8 \times 10^{-5}$$
 $0.01 \times = 1.44 \times 10^{-7}$
 $\times = 1.44 \times 10^{-7} / 0.01 = 1.44 \times 10^{-5} = [OH^-]$
 $\text{pOH} = -\log(1.44 \times 10^{-5}) = 4.84164$
 $\text{pH} = 14 - 4.84164 = 9.1594 \rightarrow 9.16$

Could also use the NH_3 & NH_4 ⁺ molarities listed above in the H-H eq - but for H-H would need to use pKa and make sure to have [A⁻] and [HA] in the correct locations

Weak Base/Strong Acid Calculations

30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCl. Determine the pH:

- c.) At the equivalence point A: 5.56
- At the equivalence point, moles added acid = initial moles base
- All added acid & initial base are neutralized (i.e. all NH₃ became NH₄+)
- pH depends on equilibrium of CONJUGATE acid

```
Conjugate acid of NH<sub>3</sub> is NH<sub>4</sub>+.
```

```
Moles NH_4^+ = moles NH_3 neutralized: 0.0300 \frac{mol}{L} \times 0.0300 L = 9.00 \times 10^{-4} mol
```

Volume acid needed for neutralization = volume containing 9.00×10^{-4} mol HCl: 9.00×10^{-4} mol HCl x $\frac{_{1L\,HCl}}{_{0.0250mol\,HCl}}$ = $0.036L\,HCl\,solution$

Total volume = 0.0360L added + 0.0300L initial = 0.0660L

Concentration of $NH_4^+ = 9.00 \times 10^{-4} \text{mol}/0.0660 \text{L} = 0.013636 \text{M}$

Equilibrium is:

$$NH_4+(aq) + H_2O(1) \iff NH_3(aq) + H_3O^+(aq)$$

$$NH_4+(aq) + H_2O(I) \iff NH_3(aq) + H_3O^+(aq)$$
 $I \quad 0.013536 \qquad 0 \qquad 0$
 $C \quad -x \qquad +x \qquad +x$
 $E \quad 0.013636-x \qquad x \qquad x$

$$K_a = \frac{K_w}{K_b} = \frac{1.00 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}$$

$$K_a = \frac{x^2}{0.013636} = 5.56x10^{-10}$$
 $x^2 = 7.576x10^{-12}$
 $x = 2.752x10^{-6} = [H_3O^+]$
 $pH = -log(2.752x10^{-6}) = 5.5603 \rightarrow 5.56$

Weak Base/Strong Acid Calculations

30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCl. Determine the pH:

- d.) When 37.0mL of 0.025M HCl has been added A: 3.43
- Excess HCl has been added. HCl is strong. pH depends on amount of HCl left over after neutralization.
- Strong acid = no equilibrium

```
Reaction: NH_3(aq) + HCl(aq) \rightarrow NH_4^+(aq) + Cl^-(aq)
```

Moles HCl added:
$$\frac{0.0250 \, mol \, HCl}{1 \, L} \, x \, 0.0370 L = 9.25 x 10^{-4} mol \, HCl$$

Moles HCl needed for neutralization:

$$9.00x10^{-4}mol\ NH_3x\frac{1mol\ HCl}{1mol\ NH_3} = 9.00x10^{-4}mol\ HCl$$

Moles HCl not used in neutralization:

```
9.25 \times 10^{-4} mol added -9.00 \times 10^{-4} mol used =2.5 \times 10^{-5} mol HCl left over
```

Total volume =
$$0.0300L + 0.0370L = 0.0670L$$

Concentration of HCl =
$$2.5 \times 10^{-5} \text{mol}/0.0670 \text{L} = 3.73 \times 10^{-4} \text{M}$$

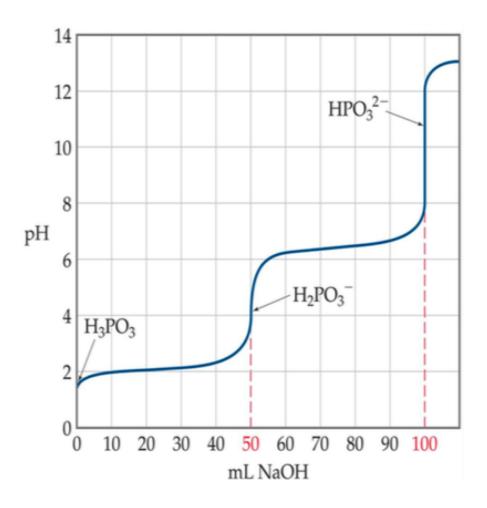
Strong acid so
$$[H_3O^+] = 3.73 \times 10^{-4} M$$
 pH = $-\log(3.73 \times 10^{-4}) = 3.43$

Acid-Base Indicators

Chemical added during a titration to cause a color change at a particular pH allowing the user to detect the endpoint.

Things to consider when choosing an indicator:

Example: titration of CH₃COOH with NaOH


- What kind of titration is it? Weak acid with strong base
- What kind of salt is formed? Basic salt
- What happens to pH due to hydrolysis? Salt is basic so

pH > 7.0

	Color		
Indicator	In Acid	In Base	pH Range*
Thymol blue	Red	Yellow	1.2-2.8
Bromophenol blue	Yellow	Bluish purple	3.0-4.6
Methyl orange	Orange	Yellow	3.1-4.4
Methyl red	Red	Yellow	4.2-6.3
Chlorophenol blue	Yellow	Red	4.8-6.4
Bromothymol blue	Yellow	Blue	6.0-7.6
Cresol red	Yellow	Red	7.2-8.8
Phenolphthalein	Colorless	Reddish pink	8.3-10.0

^{*}The pH range is defined as the range over which the indicator changes from the acid color to the base color.

Titrations of Polyprotic Acids

The titration of a polyprotic acid with a base will give an equivalence point for each acidic proton.

Solubility Equilibria

Aqueous Salt Solutions & Solubility

CHM 101

- Ionic compounds were considered soluble or insoluble
- Soluble compounds dissociated fully in water
- · Basic stoichiometry rules were used

CHM 112

- Most ionic compounds are "slightly" soluble they do dissolve a little, but not very much
- A small amount of dissolved & dissociated material is present with the bulk undissolved
- Ions are constantly moving between the dissolved and undissolved states – EQUILIBRIUM!
- Solubility constant is K_{sp} (solubility product constant)
- Discussed in terms of Molar Solubility
 - moles solute/ 1L saturated solution

CHM 101 Solubility Rules for ions

Soluble

Ammonium (NH₄⁺)
Hydrogen (H⁺)
Alkali metals (group 1A)
Nitrate (NO₃⁻)

Always soluble

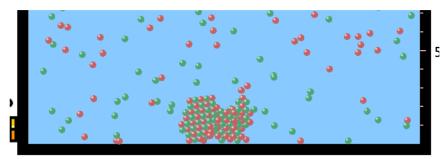
Perchlorate (CIO₄-)

Acetate (CH₃COO⁻)

Usually Soluble

Halides (F-,Cl-,Br-,& I-) Exceptions (insoluble if with): Pb²⁺, Hg₂²⁺, Ag⁺

Sulfate (SO₄²⁻)


Pb²⁺, Hg₂²⁺, Ag⁺, Ba²⁺, Ca²⁺, Sr²⁺

Sparingly Soluble (Insoluble) Sulfide (S²⁻) Hydroxide (OH⁻) Oxide (O²⁻) Carbonate (CO₃²⁻) Phosphate (PO₄³⁻)

Exceptions: soluble if with any of the cations listed in the always soluble box

Solubility Product Constant (K_{sp})

A slightly soluble ionic material is placed in water.

- The solubility is low so most will not dissolve
- What does dissolve will dissociate into ions

$$PbCl_2$$
 (s) \rightleftharpoons $Pb^{2+}(aq) + 2Cl^{-}(aq)$

- The solid is in equilibrium with the dissolved ions
- The equilibrium expression is:

$$K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$$

 Note that the PbCl₂(s) is not included in the equilibrium expression. Why?

Solubility Product Constant (K_{sp})

- K_{sp} is an approximation used to estimate solubility
- Measures the extent to which a substance will dissolve in water
- Larger K_{sp} = higher solubility
- Amount of solid material present does not alter K_{sp}
 - Solids are not included in equilibrium expressions!

Compound	$K_{\rm sp}$	Compound	K_{sp}
Aluminum hydroxide [Al(OH) ₃]	1.8×10^{-33}	Lead(II) chromate (PbCrO ₄)	2.0×10^{-14}
Barium carbonate (BaCO ₃)	8.1×10^{-9}	Lead(II) fluoride (PbF ₂)	4.1×10^{-8}
Barium fluoride (BaF ₂)	1.7×10^{-6}	Lead(II) iodide (PbI ₂)	1.4×10^{-8}
Barium sulfate (BaSO ₄)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide (Bi ₂ S ₃)	1.6×10^{-72}	Magnesium carbonate (MgCO ₃)	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [Mg(OH) ₂]	1.2×10^{-1}
Calcium carbonate (CaCO ₃)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF ₂)	4.0×10^{-11}	Mercury(I) chloride (Hg ₂ Cl ₂)	3.5×10^{-18}
Calcium hydroxide [Ca(OH) ₂]	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate [Ca ₃ (PO ₄) ₂]	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide [Cr(OH) ₃]	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate (Ag ₂ CO ₃)	8.1×10^{-13}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-13}
Copper(II) hydroxide [Cu(OH) ₂]	2.2×10^{-20}	Silver sulfate (Ag ₂ SO ₄)	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide (Ag ₂ S)	6.0×10^{-5}
Iron(II) hydroxide [Fe(OH) ₂]	1.6×10^{-14}	Strontium carbonate (SrCO ₃)	1.6×10^{-9}
Iron(III) hydroxide [Fe(OH) ₃]	1.1×10^{-36}	Strontium sulfate (SrSO ₄)	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO ₃)	3.3×10^{-14}	Zinc hydroxide [Zn(OH) ₂]	1.8×10^{-14}
Lead(II) chloride (PbCl ₂)	2.4×10^{-4}	Zinc sulfide (ZnS)	3.0×10^{-2}

Calculating K_{sp} from Solubility

The molar solubility of CaF_2 at 35°C is 1.24x10⁻³ M. (a) What is the solubility of CaF_2 in g/L? A: 0.968g/L

(b) What is K_{sp} at this temperature? A: 7.63×10^{-9}

Calculating Solubility from K_{sp}

The K_{sp} for LaF₃ is 2.0×10^{-19} .

(a) What is the molar solubility of LaF₃ in water? A: 9.3x10-6M

(b) What is the solubility in g/L? A: 1.8x10-3g/L

Comparing Molar Solubilities vs. K_{sp}

Compound	K _{sp}	Molar Solubility
BaSO ₄	1.1×10^{-20}	$1.0 \times 10^{-5} M$
$Mg_3(AsO_4)_2$	2.0x10 ⁻²⁰	$5.0 \times 10^{-5} M$

Molar Solubility Comparison:

Mg₃(AsO₄)₂ molar solubility is 5X greater than BaSO₄

K_{sp} Comparison

BaSO₄ has a K_{sp} that is 10^9 X greater than $Mg_3(AsO_4)_2$

Be careful using K_{sp} directly to compare solubilities

- Number of ions present also matters
- Can only directly compare K_{sp} if # ions produced is identical

Factors Affecting Solubility:

Common-Ion Effect

 One of the ions in the compound is also part of another compound present in the solution

pH

 Presence of hydroxide (OH⁻) or hydronium ions (H₃O⁺)

Complexation


 Formation of coordinate bonds with solvent or other molecules present in solution

Common-Ion Effect

The extent of ionization of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak electrolyte.

Equilibrium process – presence of ions shifts process back to reactants.

Ex: A solution is made with 1.0M CaCl₂ and 2.0M Ca(OH)₂

Will affect pH if solution is acidic or basic
 in this case shift toward reactants
 decreases concentration of OH⁻ in solution.

Common-Ion Calculations

1. Calculate the pH of a solution containing 0.085M nitrous acid (HNO₂; $K_a = 4.5 \times 10^{-4}$) and 0.10M potassium nitrite (KNO₂).

- 2. The K_{sp} of Mn(OH)₂ is 1.6x10⁻¹³. Calculate the molar solubility of Mn(OH)₂ in:
- a.) water A: 3.4x10⁻⁵M
- b.) A solution that contains 0.020M NaOH A: 4.0x10⁻¹⁰M
- c.) Compare the solubility of Mn(OH)₂ in these solutions

A: 85,000 times more soluble in water

3.) How much is the solubility of lead (II) chloride changed in the presence of 0.85M NaCl? $K_{sp} = 1.6 \times 10^{-5}$

Effect of pH

If the Compound Contains a(n):

Basic Anion: More soluble in acidic solution

$$Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq)$$

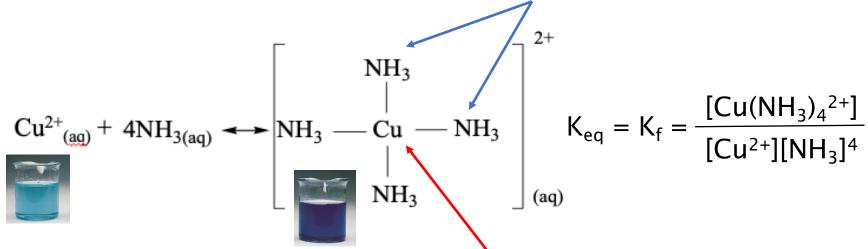
In acidic solution: $OH^{-}(aq) + H_3O^{+}(aq) \implies 2H_2O(I)$

OH- removed from solution, dissolution equilibrium shifts toward more dissolved product

Acidic Cation: More soluble in basic solution

$$C_7H_7OCOOH(s) \longleftrightarrow C_7H_7OCOO^{-1}(aq) + H_3O^{-1}(aq)$$

In basic solution: $OH^{-}(aq) + H_3O^{+}(aq) \implies 2H_2O(I)$


H₃O⁺ removed from solution, dissolution equilibrium shifts toward more dissolved product

Effect of pH Calculations

Calculate the solubility of $Mg(OH)_2$ (one of the ingredients in the antacid Maalox) in grams per liter when buffered at pH: (a) 12.50; (b) 7.00 A: a.) 7.01×10^{-7} g/L; b.) 7.00×10^{4} g/L K_{sp} of $Mg(OH)_2 = 1.2 \times 10^{-11}$; MM $Mg(OH)_2 = 58.32$ g/mol

Complex Ion Formation

Complex Ion: A central metal ion surrounded by other groups (molecules or ions) called ligands.

The metal center (Cu) is a Lewis Acid that accepts electron pairs from the ligands (NH₃), which act as Lewis Bases by donating electron pairs.

Formation of a complex ion is a reversible equilibrium reaction with its own equilibrium constant, K_f .

 K_f = formation constant

Common Complex Ion Ligands: NH₃, CN⁻, OH⁻, Br⁻, I⁻

K_f Values for Selected Complex Ions

TABLE 17.4

Formation Constants of Selected Complex Ions in Water at 25°C

Complex Ion	Equilibrium Expression	Formation Constant (K _f)
$Ag(NH_3)_2^+$	$Ag^+ + 2NH_3 \Longrightarrow Ag(NH_3)_2^+$	1.5×10^{7}
$Ag(CN)_2^-$	$Ag^+ + 2CN^- \Longrightarrow Ag(CN)_2^-$	1.0×10^{21}
$Cu(CN)_4^{2-}$	$Cu^{2+} + 4CN^{-} \Longrightarrow Cu(CN)_4^{2-}$	1.0×10^{25}
$Cu(NH_3)_4^{2+}$	$Cu^{2+} + 4NH_3 \Longrightarrow Cu(NH_3)_4^{2+}$	5.0×10^{13}
$Cd(CN)_4^{2-}$	$Cd^{2+} + 4CN^{-} \Longrightarrow Cd(CN)_4^{2-}$	7.1×10^{16}
CdI_4^{2-}	$Cd^{2+} + 4I^{-} \Longrightarrow CdI_4^{2-}$	2.0×10^{6}
HgCl ₄ ²⁻	$Hg^{2+} + 4Cl^{-} \Longrightarrow HgCl_4^{2-}$	1.7×10^{16}
HgI_4^{2-}	$Hg^{2+} + 4I^{-} \Longrightarrow HgI_4^{2-}$	2.0×10^{30}
$Hg(CN)_4^{2-}$	$Hg^{2+} + 4CN^{-} \Longrightarrow Hg(CN)_4^{2-}$	2.5×10^{41}
$Co(NH_3)_6^{3+}$	$Co^{3+} + 6NH_3 \Longrightarrow Co(NH_3)_6^{3+}$	5.0×10^{31}
$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4NH_3 \Longrightarrow Zn(NH_3)_4^{2+}$	2.9×10^{9}

Complex Ion Formation & Solubility

Formation of a Complex Ion can increase solubility

AgCl(s)
$$\Longrightarrow$$
 Ag⁺(aq) + Cl⁻(aq) K_{sp}

$$Ag^{+}(aq) + 2NH_{3}(aq) \Longrightarrow$$
 Ag(NH₃)₂+(aq) K_{f}
AgCl(s) + 2NH₃(aq) \Longrightarrow Ag(NH₃)₂+(aq) + Cl⁻(aq) K_{c}

- Ag⁺ is removed from solution, shifting solubility equilibrium to the dissociated products
- More AgCl(s) dissolves
- K_{sp} governs first process
- K_f governs second process
- Two processes are added together
- K_c (overall equilibrium expression) = $K_{sp} \times K_f$

Complex Ion Formation & Solubility

1. Determine the equilibrium constant for the reaction: $Agl(s) + 2CN^{-}(aq) \iff Ag(CN)_{2}^{-}(aq) + I^{-}(aq)$ $K_{sp} Agl = 8.3x10^{-17}; K_{f} Ag(CN)_{2}^{-} = 1x10^{21}$

Complex Ion Formation & Solubility

2. Calculate the molar solubility of zinc carbonate at 25°C in (a) pure water and (b) 1.0M NH₃ A: (a) $3.7 \times 10^{-6} M$ K_{sp} = 1.4×10^{-11} ; K_f = 4.1×10^{8} for Zn(NH₃)₄²⁺ (b) $7.6 \times 10^{-2} M$

Whether or not a precipitate will form depends on concentration.

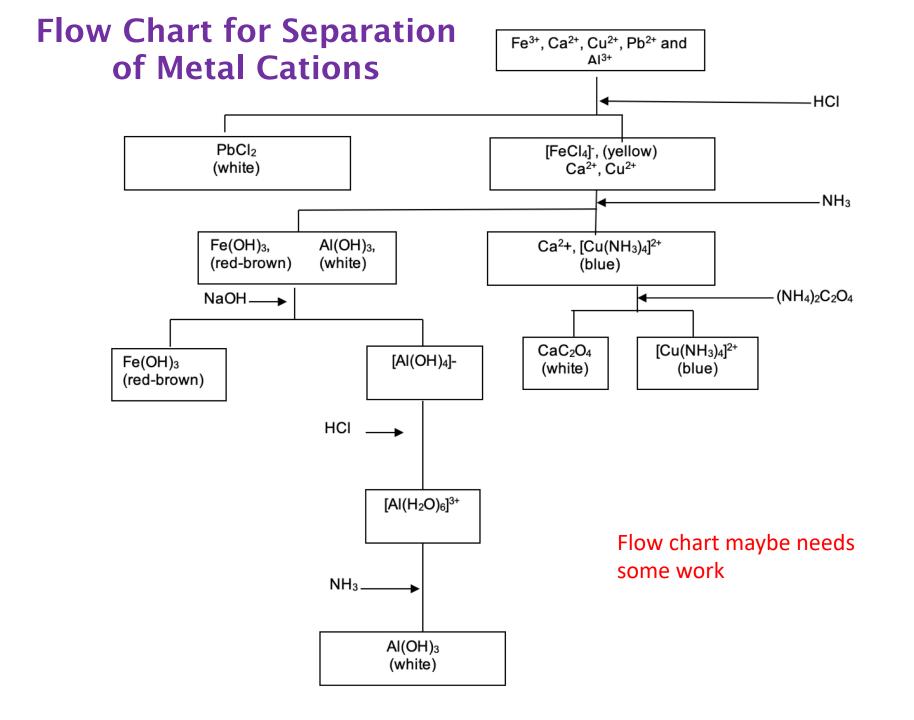
Can use Q_c values to predict precipitate formation

Calculate Q_c based on given concentrations & compare Q_c to K_{sp}

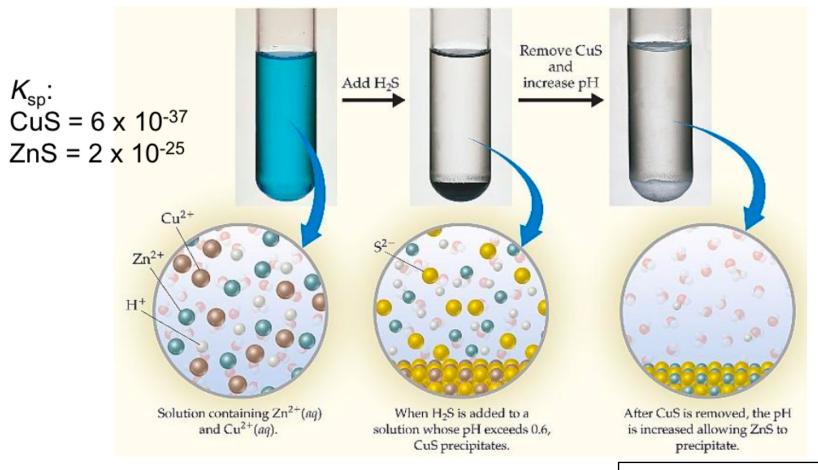
- $Q_c > K_{sp}$ Concentration too high \rightarrow Precipitate will form
- $Q_c < K_{sp}$ Concentration low \rightarrow all ions remain in solution
- $Q_c = K_{sp}$ At Equilibrium \rightarrow saturated solution

1.) If 2.00mL of 0.200M NaOH are added to 1.00L of

2.) How many grams of solid K_2SO_4 (174.3g/mol) would need to be added to 50.0mL of a 0.0010M $Ca(NO_3)_2$ solution in order to (a) start precipitation and (b) precipitate 99% of the calcium?


2.) How many grams of solid K₂SO₄ (174.3g/mol) would need to be added to 50.0mL of a 0.0010M Ca(NO₃)₂ solution in order to (a) start precipitation and (b) precipitate 99% of the calcium?

Qualitative Analysis of Metal Ions


Ways to determine which ions are present in solution

- Selective precipitation
 - One compound has very low K_{sp} and will form a precipitate
 - Other compounds have very high (or no) K_{sp}
- Complex formation
 - Ligands will only form complex with one ion present
 - May cause a precipitate to dissolve
- Flame tests
 - Color of flame can be used for ID
 - CHM 101 energy levels!

Selective Precipitation

Solution contains Zn²⁺(aq) & Cu²⁺(aq)

H₂S is added At low pH (but > 0.6) CuS precipitates CuS is removed then pH is increased causing ZnS to precipitate

Selective Precipitation

A solution contains 0.050M Mg²⁺ and 0.020M Cu²⁺. Solid NaOH is added to the solution. K_{sp} Mg(OH)₂ = 1.8x10⁻¹¹; K_{sp} Cu(OH)₂ = 4.8x10⁻²⁰

(a) Which ion will precipitate first? A: Cu²⁺

(b) What concentration of OH⁻ is necessary to begin precipitation of each cation. A: Cu²⁺ needs 1.5x10⁻⁹M Mg²⁺ needs 1.9x10⁻⁵M

Selective Precipitation

A solution contains 0.050M Mg²⁺ and 0.020M Cu²⁺. Solid NaOH is added to the solution. K_{sp} Mg(OH)₂ = 1.8x10⁻¹¹; K_{sp} Cu(OH)₂ = 4.8x10⁻²⁰

A: Cu²⁺ needs 1.5x10⁻⁹M Mg²⁺ needs 1.9x10⁻⁵M

(a) What concentration of OH- is necessary to begin precipitation of each cation.

Cu(OH)₂(s)
$$\leftarrow$$
 Cu²⁺(aq) + 2OH⁻(aq) 0.020 X or 2X?