
Chapter 16

Acids & Bases

$H_2O + H_2O \longrightarrow H_3O^+ + OH^-$

Some Polyatomic lons that are Important for Acids & Bases

Ammonium	NH_4^+	Nitrate	NO_3^-
Hydronium	H_3O^+	Nitrite	NO_2^-
Acetate	CH ₃ COO ⁻	Phosphate	PO ₄ ³⁻
Carbonate	CO ₃ ²⁻	Perchlorate	ClO ₄ -
Hydroxide	OH-	Sulfate	SO ₄ ²⁻
Cvanide	CN-		

You should know these ions

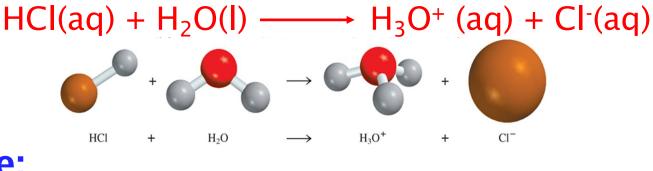
What are Acids & Bases? Arrhenius Definition

Acid:

A substance that, when dissolved in water, increases the concentration of hydrogen (H⁺) ions (aka protons).

HCI (g) $\xrightarrow{H_2O}$ H⁺ (aq) + Cl⁻ (aq)

Base:

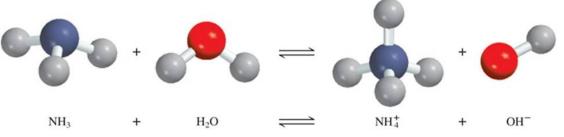

A substance that, when dissolved in water, increases the concentration of hydroxide ions (OH⁻).

NaOH (s) $\xrightarrow{H_2O}$ Na⁺ (aq) + OH⁻ (aq)

What are Acids & Bases? Brønsted-Lowry Definition Acid:

A proton (H⁺) donor

- Must have a removable proton
- Proton goes to a base



Base:

A proton (H⁺) acceptor

Must have a pair of non-bonding electrons

 $NH_3(aq) + H_2O(I) \implies NH_4^+(aq) + OH^-(aq)$

Strength of Acids & Bases

Strong Acids & Bases: Complete dissociation

- Non H⁺/OH⁻ ions form spectator ions
- Can use basic stoichiometry (CHM 101) in calculations
- No original reactant or product left in solution

Weak Acids & Bases: Incomplete dissociation

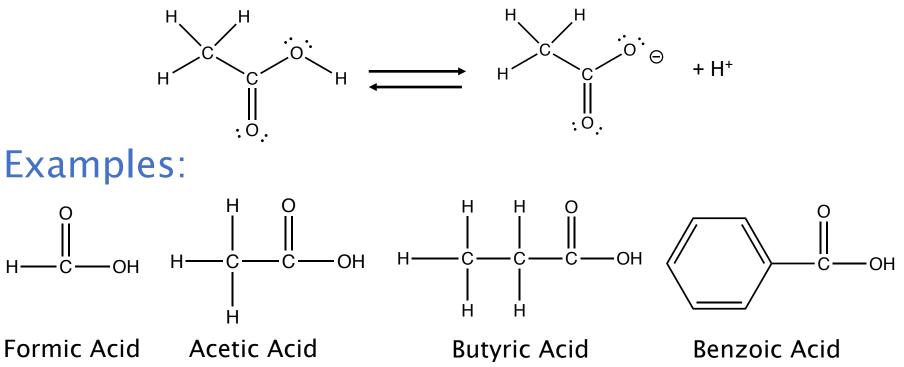
- Equilibrium process
- Equilibrium constants are K_a or K_b
- Titrations involve stoichiometry and equilibrium calcs.

Acid/Base Strength in Aqueous Solutions

- H₃O⁺ is the strongest acid
- OH⁻ is the strongest base
- Acid or Base reacts with water
 - Water acts as a weak acid or base in the reaction

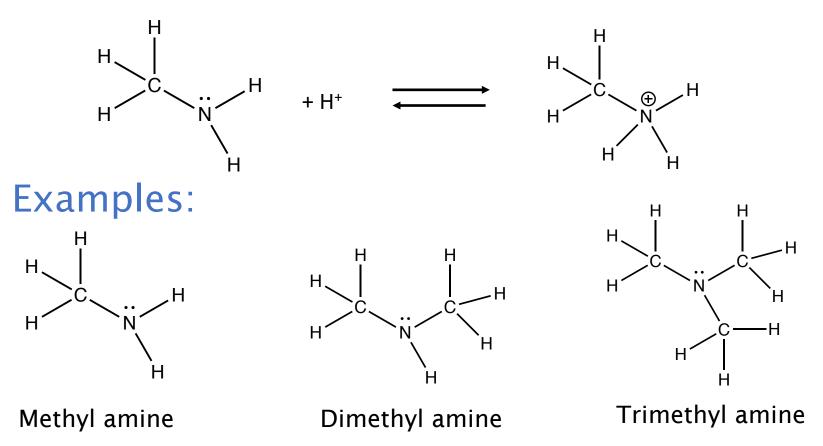
Common Acids & Bases You Will Need to Know

Strong Acids:		Strong Bases	:	
Hydrochloric Acid	HCI	Soluble Hydro	oxides:	
Sulfuric Acid	H_2SO_4	Sodium	NaOH	
Nitric Acid	HNO ₃	Potassium	КОН	
Perchloric Acid	HCIO ₄	Lithium	LiOH	
Hydrobromic Acio	d HBr	Barium	Ba(OH) ₂	
Hydroiodic Acid	HI	etc.		
Weak Acids:		Weak Bases:		
Carbonic Acid	H_2CO_3	Ammonia	NH_3	
Phosphoric Acid	H ₃ PO ₄	Amines	R-NH ₂ ,R ₂ NH	
Acetic Acid	CH₃COOH	Insoluble/slig	htly	
Hydrofluoric Acid	HF	soluble hydroxides		
Nitric Acid	HNO ₂			
Hydrocyanic acid	HCN			
Carboxylic Acids	R-COOH			


Organic Acids: Carboxylic Acids (-COOH)

Weak organic acids

- COOH group on molecule is acidic
- Removal of proton (H⁺) creates resonance structure
- Stabilizes anion


Never fully dissociate in water

• Equilibrium process

Organic Bases: Amines (contain N) Weak organic bases

- Derivatives of ammonia
- N has lone pair of electrons to accept a proton Also do not fully dissociate in water
- Equilibrium process

Organic Acids & Bases: Things to keep in mind

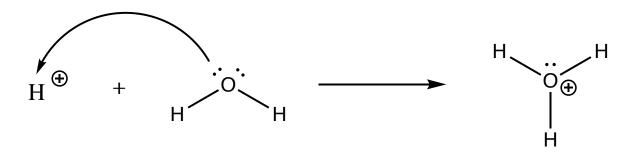
Organic Acids & Bases:

Only acidic proton

Acid: CH₃COOH Becomes CH₃COO⁻

Amine: CH_3NH_2 Becomes $CH_3NH_3^+$

Carbon: no lone pairs

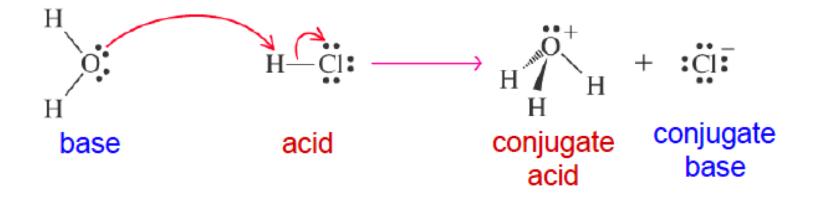

- Cannot accept extra protons
- Protons bonded to carbon are not acidic

Added proton bonds via lone pair on N

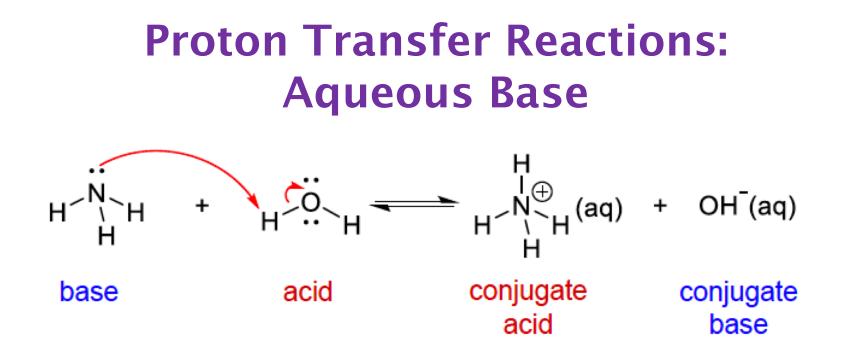
H⁺ Ion in Water

H⁺ is simply a proton – an H atom with no electron

- In water, clusters of hydrated H⁺ form
- Simplest cluster is the hydronium ion: H₃O⁺

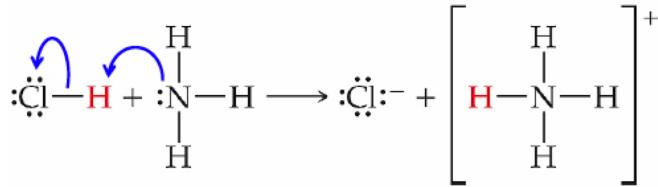


• H⁺ (aq) & H₃O⁺(aq) are used interchangeably


$$HA \longrightarrow H^+ + A^-$$

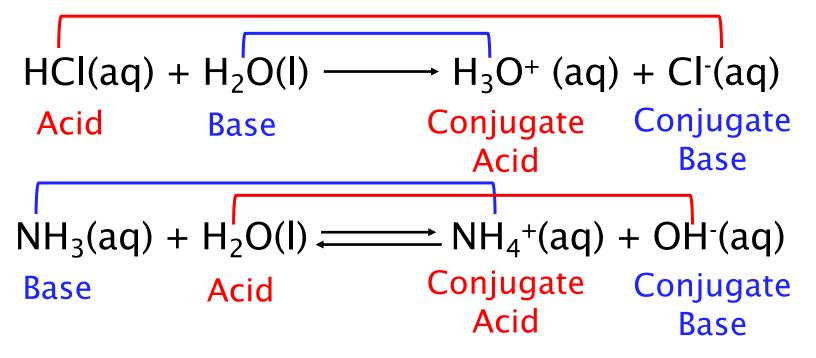
$$HA + H_2O \implies H_3O^+ + A^-$$

Proton Transfer Reactions: Aqueous Acid



- HCl (the BL acid) donates a proton (H⁺)
- Water (the BL base) accepts the proton
- The conjugate base of the acid (Cl⁻) and the conjugate acid of the base (H₃O⁺) are formed

- Water (the BL acid) donates a proton (H⁺)
- Ammonia (the BL base) accepts the proton
- Water is AMPHIPROTIC it can act as either an acid or a base (donate or accept a proton)


Proton Transfer Reactions: Non-Aqueous

- HCI (the BL acid) donates a proton (H⁺)
- Ammonia (the BL base) accepts the proton
- Can occur in the gas phase water not needed
- Advantage of Brønsted-Lowry definition over Arrhenius definition
- Lewis definition even more broad (electron pair donor/acceptor)

13

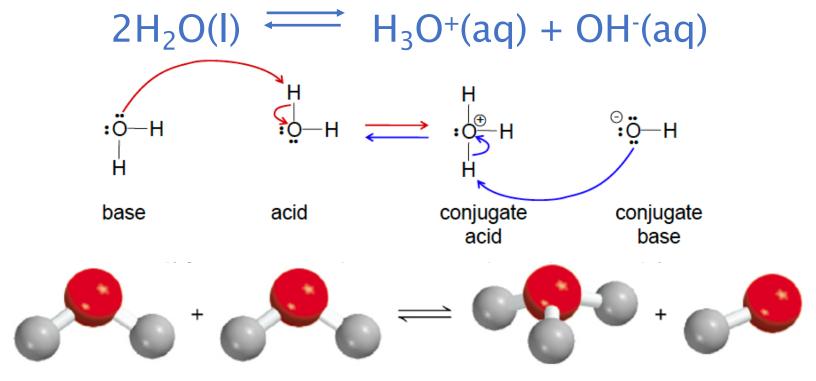
Conjugate Acid-Base Pairs

Conjugate Acid: Formed from the **base** after H⁺ is added **Conjugate Base:** Formed from the **acid** after H⁺ is lost

Each acid has a conjugate base, each base has a conjugate acid. Whether something is an acid or base depends on the system.

Conjugate Acid-Base Pair Examples

- 1. Give the conjugate base of each of the following acids:
 - a) HIO₃
 - b) NH₄+
 - c) H_2S
 - d) HPO₄²⁻


2. Write the formula for the conjugate acid of each of the following bases:

- a) HSO₃-
- b) F⁻
- c) CO₃²⁻
- d) CH₃NH₂

Acid-Base Properties of Water: Autoionization

Autoionization: In pure water, one water molecule can donate a proton to another water molecule

• Essentially the water ionizes itself ("auto")

This is why pure water can conduct electricity

Autoionization: An Equilibrium Process

Consider the autoionization of water at 25°C

 $H_2O(I) + H_2O(I) \longrightarrow H_3O^+(aq) + OH^-(aq)$ Weak Base Weak Acid Strong Acid Strong Base

$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$

This H_3O^+ & OH^- concentration is where the pH of 7 for pure water comes from

 $K_w = [H_3O^+][OH^-] = 1.0x10^{-14}$ (ion-product constant)

 K_w is very small = favors reactants (H_2O)

 $K_{\rm w}$ applies to both pure water and aqueous solutions

- If know acid concentration, can use K_w to find the base concentration & vice versa

What is log?

Consider the number 1.0 x 10⁻³

- Log refers to base 10
- Essentially, it refers to the exponent in a number written in scientific notation
- It tells you the magnitude (size) of the number
- The log of 1.0 x 10⁻³ is -3
- The formula for pH is -log to eliminate the negative sign in the answer

Consider the number 2.8 x 10⁻³

- Log still refers primarily to the exponent, but the actual value is impacted by the rest of the number
- The log of 2.8 x 10⁻³ will be close to, but not exactly, -3
- $Log(2.8 \times 10^{-3}) = -2.6$

Low pH values are acidic because concentrations generally have negative exponents. 1×10^{-3} M > 1×10^{-10} M

pH & pOH

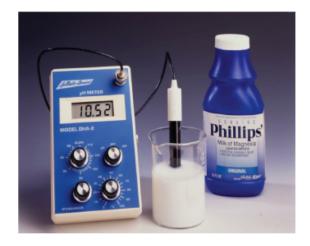
Method of Measuring Acidity

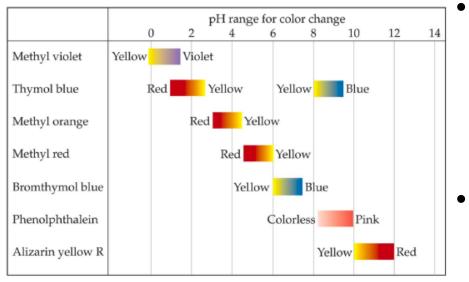
• <u>Power of the Hydrogen lon</u>

Formulas:

- $pH = -log[H_3O^+]$
- $[H_3O^+] = 10^{(-pH)}$
- $pOH = -log[OH^-]$
- $[OH^{-}] = 10^{(-pOH)}$
- $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} M$
- $pK_w = pH + pOH = 14$

Neutral: $[H_3O^+] = [OH^-] pH = 7$ Acidic: $[H_3O^+] > [OH^-] pH < 7$ Basic: $[H_3O^+] < [OH^-] pH > 7$


Sample	pH Value	
Gastric juice in the stomach	1.0-2.0	
Lemon juice	2.4	
Vinegar	3.0	
Grapefruit juice	3.2	
Orange juice	3.5	
Urine	4.8-7.5	
Water exposed to air*	5.5	
Saliva	6.4-6.9	
Milk	6.5	
Pure water	7.0	
Blood	7.35-7.45	
Tears	7.4	
Milk of magnesia	10.6	
Household ammonia	11.5	


Sig Figs: # sig figs in concentration = # sig figs after decimal point in pH/pOH $_{19}$

Measuring pH

Most Accurate: pH meter

 Measures the voltage in a solution to determine concentration & pH

Other methods:

- Litmus paper
 - Red litmus paper turns blue above ~ pH 8
 - Blue litmus paper turns red below ~ pH 5
- Indicators
 - In solution or on pHydrion paper

Concentrated vs. Dilute Solutions

Do we need to take the ionization of water into account when determining pH?

Example 1: Concentrated Solutions Consider an aqueous 0.010M solution of nitric acid. Two reactions are occurring: $HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq) [H_3O^+] = 0.010M$

 $2H_2O(I) \underset{\longrightarrow}{\longrightarrow} H_3O^+(aq) + OH^-(aq) \qquad [H_3O^+] = 1.0 \times 10^{-7}M$

The $[H_3O^+]$ from ionization of water is negligible: 0.010M + 0.0000001M = 0.0100001M It can be ignored

Concentrated vs. Dilute Solutions

Example 2: Dilute Solutions

- Consider an aqueous 1.0x10⁻⁶M solution of nitric acid.
- Two reactions are again occurring:
- $HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq) [H_3O^+] = 1.0 \times 10^{-6} M$
- $2H_2O(I) \implies H_3O^+(aq) + OH^-(aq)$ $[H_3O^+] = 1.0 \times 10^{-7} M^*$
- *Likely somewhat less due to Le Châtelier's Principle

The [H₃O⁺] from ionization of water is 10% of the amount contributed by the acid: 1.0x10⁻⁶M + 0.1x10⁻⁶M = 1.1x10⁻⁶M <u>It CANNOT be ignored</u>

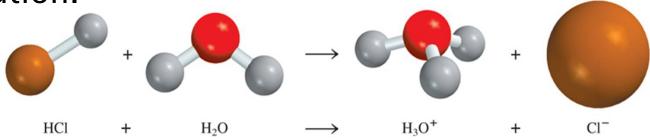
Contribution from autoionization of water must be taken into account if acid/base provides < 10⁻⁶M H₃O⁺/OH⁻

pH Calculations for Strong Acids/Bases

 Calculate [H⁺] at 25°C for an aqueous solution in which [OH⁻] = 0.00045M. Indicate whether it is acidic, basic, or neutral. A: 2.2x10⁻¹¹M; basic

2. Find the pH and pOH of a 0.0050M HBr solution at 25°C pH: 2.30; pOH: 11.7

3. Calculate the H_3O^+ and OH^- concentrations at 25°C of an aqueous 0.010M solution of nitric acid. [H₃O⁺]: 0.010M [OH⁻]: 1.0x10⁻¹²

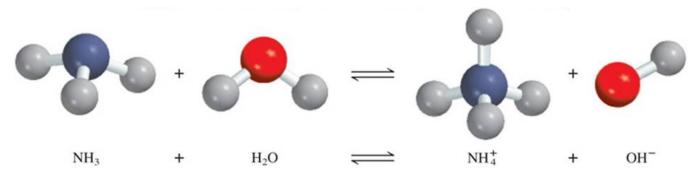

5. Calculate the pH made from 15.00mL of 1.00M HCl diluted to 0.500L. A:1.523

6. What is the concentration of a solution of $Ba(OH)_2$ for which the pH is 10.05? A: 5.6x10⁻⁵M

Strength of Acids & Bases

Strong Acids & Bases: Complete dissociation

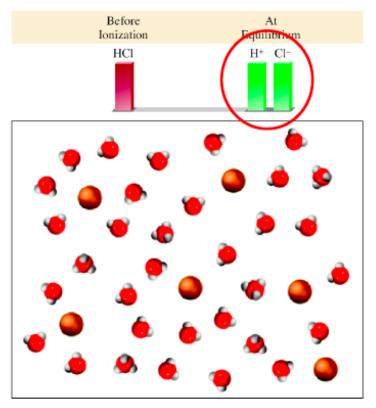
- Strong electrolytes
- Good conductors of electricity
- Completely ionized in aqueous solution; no original compound remains
- Conjugate has no measurable strength
- Single arrow not equilibrium
- H₃O⁺ is the strongest acid that can exist in aqueous solution.

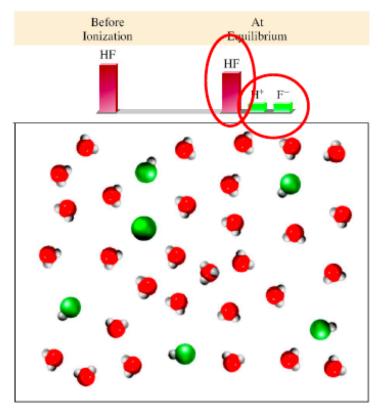

 $HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq)$

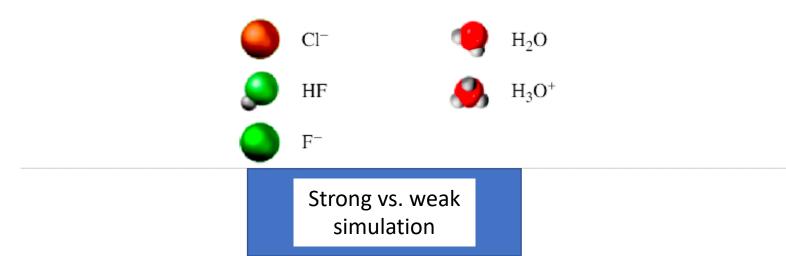
 $NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$

Strength of Acids & Bases

Weak Acids & Bases: Incomplete dissociation


- Some of original compound remains along with ions
- Equilibrium process; represented by double arrow
- Dissociation is governed by an equilibrium constant
 - K_a or K_b
- Poor conductors of electricity
- Conjugates can act as acids/bases


 $CH_3COOH(aq) + H_2O(I) \implies H_3O^+(aq) + NO_3^-(aq)$


 $CH_3NH_2(aq) + H_2O(I) \longrightarrow CH_3NH_3^+(aq) + OH^-(aq)$

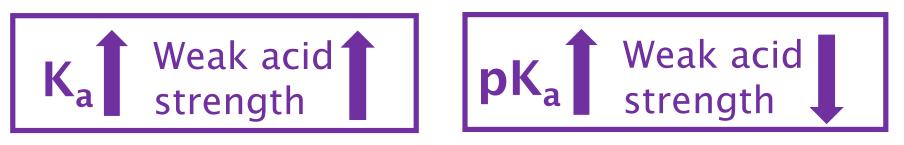
Strong Acid (HCI)

Weak Acid (HF)

Relative Strengths of Conjugate Acid-Base Pairs

Strong Acids/Bases give weak conjugates and vice versa

Table 16.2 Relative Strengths of Conjugate Acid-Base Pairs					
	Acid Conjugate Base				
Acid strength increases	Weak acids Strong acids	HI (hydr HBr (hydr HCl (hydr H $_2$ SO ₄ (s HNO ₃ (r H $_3$ O ⁺ (h (HSO ₄ ⁻ (h) HF (hydr HNO ₂ (r HCOOH CH ₃ COO NH ⁺ ₄ (an		ClO ₄ ⁻ (perchlorate ion) I ⁻ (iodide ion) Br ⁻ (bromide ion) Cl ⁻ (chloride ion) HSO ₄ ⁻ (hydrogen sulfate ion) NO ₃ ⁻ (nitrate ion) H ₂ O (water) SO ₄ ²⁻ (sulfate ion) F ⁻ (fluoride ion) NO ₂ ⁻ (nitrite ion) HCOO ⁻ (formate ion) CH ₃ COO ⁻ (acetate ion) NH ₃ (ammonia) CN ⁻ (cyanide ion) NH ₂ ⁻ (amide ion)	Base strength increases


Stronger acids will dominate over weaker acids HNO₂(aq) + CN⁻(aq) \implies HCN(aq) + NO₂(aq) K>1 Acid Ionization Constant: K_a Equilibrium constant for acid dissociation Dissociation of acid in water:

$$HA(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$
$$K_{eq} = \frac{[H_3O^+][A^-]}{[HA]} = K_a$$

K_a is the acid ionization (aka acid dissociation) constant

- Quantitative measure of acid strength
- Higher K_a = stronger acid
- Sometimes discussed in terms of pK_a

 $pK_a = -log K_a$

K_a Values for Some Common Weak Acids

Name of Acid	Formula	Structure	Ka	Conjugate Base	$K_{\rm b}$
Hydrofluoric acid	HF	H—F	7.1×10^{-4}	F ⁻	1.4×10^{-11}
Nitrous acid	HNO_2	O=N-O-H	$4.5 imes 10^{-4}$	NO_2^-	2.2×10^{-11}
Acetylsalicylic acid (aspirin)	$C_9H_8O_4$		3.0×10^{-4}	$C_9H_7O_4^-$	3.3×10^{-11}
		O II			
Formic acid	HCOOH	Н—С—О—Н	1.7×10^{-4}	HCOO ⁻	5.9×10^{-11}
Ascorbic acid*	$C_6H_8O_6$	H—OOH	8.0×10^{-5}	$C_6H_7O_6^-$	1.3×10^{-10}
		C = C C = 0 C = 0 C = 0			
Benzoic acid	C ₆ H ₅ COOH	СH ₂ OH	$6.5 imes 10^{-5}$	$C_6H_5COO^-$	$1.5 imes 10^{-10}$
Acetic acid	CH ₃ COOH	O U	$1.8 imes 10^{-5}$	CH ₃ COO ⁻	$5.6 imes 10^{-10}$
		СН ₃ —С—О—Н			
Hydrocyanic acid	HCN	H—C≡N	4.9×10^{-10}	CN^{-}	2.0×10^{-5}
Phenol	C ₆ H ₅ OH	О-О-Н	1.3×10^{-10}	$C_6H_5O^-$	7.7×10^{-5}

Calculations Using K_a

1.) 0.100mol of HF is dissolved in 1.00L of water at 25°C. The pH at equilibrium was found to be 2.08. Calculate K_a .

2.) What is the pH of a weak 0.122M monoprotic acid whose K_a is 5.7x10⁻⁴?

Determining Relative Acidity

1.) Which is the stronger acid, HF or HNO₂?

Look up K_a in table: HF: 7.5×10^{-4} HNO₂: 4.6×10^{-4} Making Approximations in Equilibrium Calculations (do we need to use the Quadratic Equation?)

Answer: Only if the percent difference between X and the equilibrium concentration is >5%

Example A:

Find [HNO₂] for a 0.010M solution of Nitrous acid (HNO₂) at 25°C. HNO₂(aq) + H₂O(I) \implies H₃O⁺(aq) + NO₂⁻(aq) where $K_a = 2.9 \times 10^{-8}$. $K_a = \frac{[H_3O^+][A^-]}{[HA]}$

	HCIO	H ₃ O⁺	CIO⁻
Ι	0.010	0	0
С	-X	+X	+X
E	0.010-X	Х	Х

 $2.9 \times 10^{-8} = \frac{[X][X]}{[0.010 - X]} \qquad \text{Ignore this X}$ [HCIO] = 0.010 - 0.000017 ~ 0.010 (0.000017/0.010)*100 = 0.17%

Approximation OK

 $X^2 = 2.9 \times 10^{-10}$ X = 0.000017

 $2.9 \times 10^{-8} = \frac{X^2}{0.010}$

Making Approximations in Equilibrium Calculations (do we need to use the Quadratic Equation?)

Answer: Only if the percent difference between X and the equilibrium concentration is >5%

Example B:

Find [HClO] for a 0.010M solution of Hypochlorous acid (HClO) at 25°C. HClO(aq) + H₂O(l) \implies H₃O⁺(aq) + ClO⁻(aq) where K_a = 4.5x10⁻⁴. [H₂O⁺][A⁻]

	HNO ₂	H ₃ O⁺	NO ₂ -
Ι	0.010	0	0
С	-X	+X	+X
E	0.010-X	Х	Х

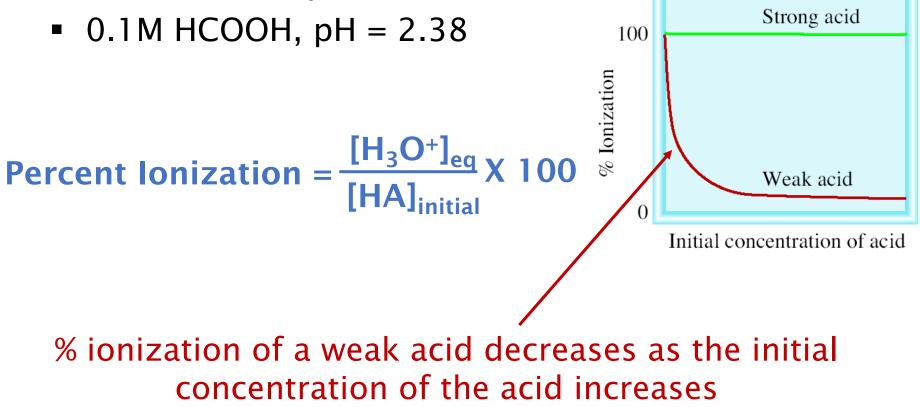
 $4.5 \times 10^{-4} = \frac{X^2}{0.010}$ $X^2 = 4.5 \times 10^{-6}$ X = 0.0021

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

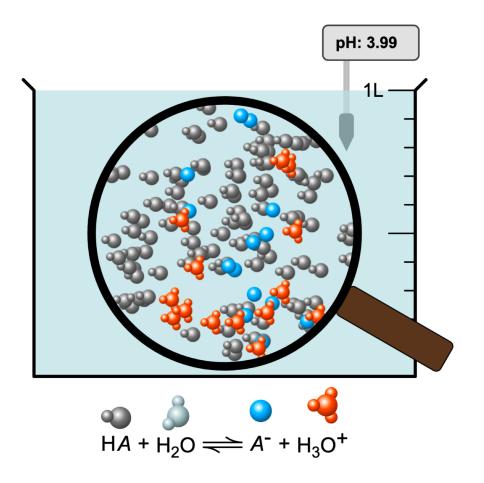
$$4.5 \times 10^{-4} = \frac{[X][X]}{[0.010 - X]} \qquad \text{Ignore this } X$$

$$[HNO_{2}] = 0.010 - 0.0021 \sim 0.008$$

$$(0.0021/0.008)*100 = 26\%$$
Approximation NOT acceptable

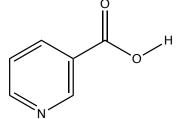

Making Approximations

1.) Find the pH of a 0.20M solution of Formic Acid (HCHO₂)


Look up K_a in table:

Percent Ionization and K_a

- Indicates the extent to which an acid is ionized
- Only matters for weak acids (100% for strong)
- Higher percent ionization = more ions = stronger acid
 - Ex: 0.1M HCl, pH = 1.00



2 Factors affect pH of solution: nature of acid/base concentration

Calculations Using Percent Ionization

1.) Niacin, one of the B vitamins, has the following structure: \hat{I}

a.) If a 0.020M solution has a pH of 3.26, what is the K_a for niacin? A:1.6x10⁻⁵

b.) What is the percent ionization of the 0.020M solution?

2.) A 0.0100M solution of HNO_2 is 19% ionized at equilibrium. What is the K_a ?

A:4.46x10⁻⁴ 40

Polyprotic Acids

Acids that have more than one ionizable proton

• Ionize in successive steps $H_2CO_3(aq) + H_2O(I) \implies H_3O^+(aq) + HCO_3^-(aq)$

 $HCO_3(aq) + H_2O(I) \implies H_3O^+(aq) + CO_3^{2-}(aq)$

- Each step has its own K_a
- Easier to remove the first proton than the second, etc.
 - $K_{a1} > K_{a2} > K_{a3}$
- Successive equilibrium constants have less and less impact on pH
 - May not need to use all K values to solve a problem

Polyprotic Acids

If the difference between the K_a values for the first and 2nd, 3rd, etc. K_a values is 10³ or more, the pH generally depends on only the first dissociation.

Name	Formula	K _{a1}	K _{a2}	K _{a3}
Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous Sulfurous	$\begin{array}{c} H_{2}C_{6}H_{6}O_{6} \\ H_{2}CO_{3} \\ H_{3}C_{6}H_{5}O_{7} \\ H_{2}C_{2}O_{4} \\ H_{3}PO_{4} \\ H_{2}SO_{3} \\ H_{2}SO_{4} \end{array}$	8.0×10^{-3} 4.3×10^{-7} 7.4×10^{-4} 5.9×10^{-2} 7.5×10^{-3} 1.7×10^{-2} Large	$\begin{array}{c} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \\ 1.2 \times 10^{-2} \end{array}$	$4.0 imes 10^{-7}$ $4.2 imes 10^{-13}$
Tartaric	$H_2C_4H_4O_6$	1.0×10^{-3}	4.6×10^{-5}	

Polyprotic Acid Calculations Calculate the pH of a 0.0050M solution of sulfuric acid.

A: pH=2.10 43

Base Ionization Constant: K_b **Equilibrium constant for base dissociation** Weak bases react with water to produce hydroxide ions:

$$B(aq) + H_2O(I) \rightleftharpoons HB^+(aq) + OH^-(aq)$$
$$K_{eq} = \frac{[HB^+][OH^-]}{[B]} = K_b$$

K_b is the base ionization constant

- Quantitative measure of base strength
- Higher K_b = stronger base
- Sometimes discussed in terms of pK_b

$$bK_b = -\log K_b$$

Types of Weak Bases

- Neutral substances that have an atom with a nonbonding pair of electrons
 - Examples include ammonia (NH₃) & amines
 - Amines described at beginning of chapter (slide 5)
- Anions (conjugate bases) of weak acids
 - Examples include HCO₃⁻, CIO⁻, HS⁻
 - Act as H⁺ acceptors in water
 - Anions of strong acids do not act as bases not an equilibrium process
- Insoluble/slightly soluble hydroxides
 - Soluble hydroxides are strong bases
 - Ca(OH)₂, Fe(OH)₃
 - Solubility equilibriums (K_{sp}) will be discussed in the next chapter

K_b Values for Some Common Weak Bases

Name of Base	Formula	Structure	K_{b}^{*}	Conjugate Acid	Ka
Ethylamine	$C_2H_5NH_2$	CH_3 -CH ₂ -N-H H	$5.6 imes 10^{-4}$	$C_2 H_5 \overset{+}{N} H_3$	1.8×10^{-11}
Methylamine	CH ₃ NH ₂	СH ₃ —N—H Н	$4.4 imes 10^{-4}$	$CH_3 \overset{+}{N}H_3$	2.3×10^{-11}
Ammonia	NH ₃	H-N-H	$1.8 imes 10^{-5}$	NH_4^+	5.6×10^{-10}
Pyridine	C ₅ H ₅ N	H N:	1.7×10^{-9}	C_5H_5 ⁺ NH	$5.9 imes 10^{-6}$
Aniline	C ₆ H ₅ NH ₂	—————————————————————————————————————	3.8×10^{-10}	$C_6H_5 \overset{+}{N}H_3$	$2.6 imes 10^{-5}$
Caffeine	$C_8H_{10}N_4O_2$	$ \begin{array}{c} $	5.3×10^{-14}	$C_8H_{11}\overset{+}{N}_4O_2$	0.19
Urea	(NH ₂) ₂ CO	ĊH ₃ О Н—N—С—N—Н Н Н	1.5×10^{-14}	$H_2NCON^+H_3$	0.67

K_a & K_b Relationship for Conjugate Acid/Base Pairs in Water

Base & water $NH_3 (aq) + H_2O(I) \implies NH_4(aq) + OH^-(aq) K_b = 1.8 \times 10^{-5}$ $pK_b = 4.74$

Conjugate acid & water NH₄⁺ (aq) + H₂O(I) \implies NH₃(aq) + H₃O⁺(aq) K_a = 5.6x10⁻¹⁰ pK_a = 9.26

Add the two reactions together: multiply K values (Ch15) $2H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$

> $K_{w} = K_{a} \times K_{b} = 1.0 \times 10^{-14}$ 1.8×10⁻⁵ × 5.6×10⁻¹⁰ = 1.0×10⁻¹⁴

> > $pK_a + pK_b = 14$ 9.26 + 4.74 = 14High K_a must have
> > Low K_b & vice versa

Calculations Using K_b

1.) What is the pH of a 0.15M solution of NH_3 ? $K_b = 1.8 \times 10^{-5}$

2.) Codeine is a weak organic base. A 5.0×10^{-3} M solution of codeine has a pH of 9.95. Calculate the pK_b and the value of K_b for this base.

A:
$$K_b = 1.62 \times 10^{-6}$$

pK_b = 5.79 49

3.) A solution of ammonia in water has a pH of 11.17. What is the molarity of the solution? $K_b = 1.8 \times 10^{-5}$

Factors impacting acid strength Basic concept: easier to lose H, stronger acid

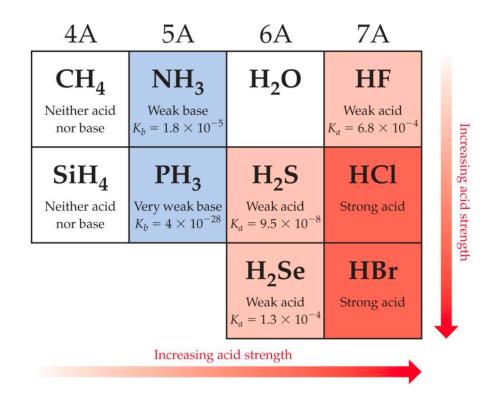
Charge:

- Higher charge = stronger bond to H⁺ = weaker acid
- Ex: $HAsO_4^{2-}$ weaker than $H_2AsO_4^{-}$ weaker than H_3AsO_4

Bond length:

- Shorter bonds are stronger so H⁺ harder to remove
- Ex: HF weaker than HCl weaker than HBr

Electronegativity:


- Less electronegative, share e⁻ more equally, stronger bond
- Ex: P less electronegative than S, H₃PO₄ weaker than H₂SO₄

For Oxoacids

- If all else is equal, fewer double bonds = weaker acid
- Ex: H₂SO₃ weaker than H₂SO₄
- More double bonds = more resonance = more stability with H⁺ removed

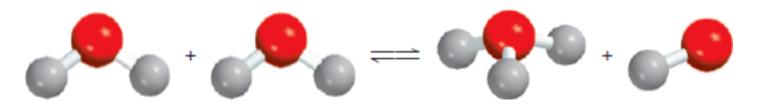
Stability of conjugate base: more stable anion = more acidic

Binary Acid Trends in the Periodic Table

For <u>binary</u> acids:

Acidity increases left to right across a row

- Electrongativity increases left to right
 Acidity increases top to bottom down a group
- Atomic size increases down a group

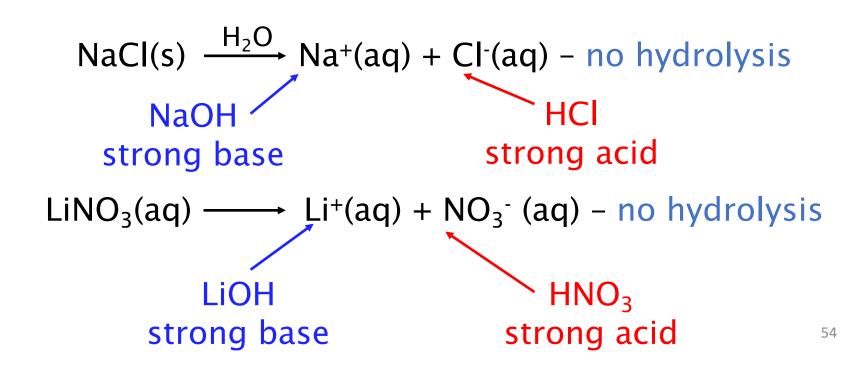

Acid-Base Properties of Salts

Salts are ionic compounds - contain cation (+) & anion (-)

- Can be formed from acid/base neutralization
- Dissociate (separate into ions) when dissolve in water
- Can sometimes impact pH through hydrolysis

Hydrolysis:

- Hydro = water
- lysis = to cut
- Reactions that break water into H^+ (H_3O^+) & OH^-



Extent to which a salt causes hydrolysis determines extent of its acid-base properties (if any)

Acid-Base Properties of Salts Hydrolysis can be caused by both cations & anions, but <u>does not happen in every situation</u>

Salts formed from conjugates of a strong acid + a strong base do not cause hydrolysis

For salt solutions: no hydrolysis = neutral (no OH^- or H_3O^+)

Acid-Base Properties of Salts

Soluble ions derived from a weak base or a weak acid will cause hydrolysis

Ex 1: NaOH: strong base CH_3COOH : weak acid $CH_3COONa(s) \xrightarrow{H_2O} Na^+(aq) + CH_3COO^-(aq)$

 $CH_3COO^{-}(aq) + H_2O(I) \implies CH_3COOH(aq) + OH^{-}(aq)$

Ex 2: NH₃: weak base HCI: strong acid $NH_4CI(s) \xrightarrow{H_2O} NH_4^+(aq) + CI^-(aq)$

 $NH_4^+(aq) + H_2O(I) \longrightarrow NH_3(aq) + H_3O^+(aq)$

Determining if a Salt Solution is Acidic, Basic, or Neutral

Look at the ions that the salt dissociates into:

- If cation would come from a strong base not acidic
- If anion would come from a strong acid not basic
- If both cation & anion have a strong parent neutral
- If cation would come from a weak base acidic
- If anion would come from a weak acid basic
- If both cation & anion have a weak parent
 - Acidity/basicity depends on relative strength
 - Math can be complicated
 - Qualitatively:
 - \circ K_a < K_b basic solution
 - \circ K_a > K_b acidic solution
 - \circ K_a ≈ K_b pretty close to neutral

Determining if a Salt Solution is Acidic, Basic, or Neutral

1.) Predict whether aqueous solutions of the following compounds are acidic, basic, or neutral.

a.) NH₄NO₃

b.) FeCl₃

c.) Na₂CO₃

d.) KCIO₄

e.) ZnF₂

2.) For each of the following pairs, indicate which salt would form the more acidic (i.e. less basic) 0.010M solution.

a.) NaNO₃ or $Fe(NO_3)_3$

b.) CH_3NH_3CI or $BaCI_2$

c.) KNO₂ or KNO₃

d.) $(NH_4)_2SO_4$ or $(NH_4)_2SO_3$

3.) Calculate the [OH⁻] and pH of a 0.10M NaCN solution. K_a for HCN is 4.9x10⁻¹⁰. A: [OH⁻] = 1.4x10⁻³M pH = 11.16

4.) Calculate the pH of a 0.42M NH₄Cl solution. K_b for NH₃ is 1.8x10⁻⁵ A: pH = 4.82

What if an ion can act as either an acid or a base?

Occurs with salts from polyprotic acids such as H_2CO_3 , H_3PO_4 , H_2SO_4 .

Need to compare K_a and K_b values

- Example: NaHCO₃
 - $HCO_3^{-}(aq) + 2H_2O(I) \xrightarrow{} CO_3^{2-}(aq) + H_3O^{+}(aq)$ $K_a = 4.8 \times 10^{-11}$ Acting
 - $HCO_3^{-}(aq) + H_2O(I) \longrightarrow H_2CO_3(aq) + OH^{-}(aq)$ $K_b = K_w/K_a = 2.4 \times 10^{-8}$
- K_b > K_a so solution will be basic!

Acting

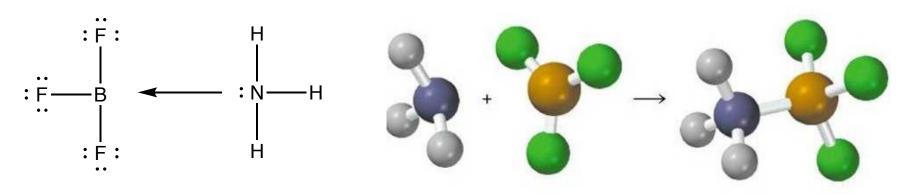
as acid

as base

Lewis Acids & Bases

Acid:

An electron pair acceptor


- Do not need to have a removable proton
- Must have an empty orbital to put electrons in

Base:

An electron pair donor

• Must have a pair of non-bonding electrons

Ex: $BF_3(g) + NH_3(g) \rightarrow F_3B-NH_3(g)$

Hydration of Metal Ions

Salts with small, highly charged metal cations (e.g. Al³⁺, Fe³⁺, Cr³⁺, Be²⁺) and the conjugate base of a strong acid can also have acidic properties

Example: AICl₃ dissolved in water produces:

 $AI(H_2O)_6^{3+}(aq) + H_2O(I) \Longrightarrow AI(OH)(H_2O)_5^{2+}(aq) + H_3O^{+}(aq)$ $K_a = 1.3 \times 10^{-5} \rightarrow Acid! + 3CI^{-}(aq)$

- e⁻ in water molecules are pulled toward metal ion
- O-H bonds in attached waters become more polarized
- H⁺ dissociates from water molecule forming H₃O⁺

Hydration of Metal Ions

Higher charge & smaller size make cations more acidic

 $Na^{+} < Ca^{2+} < Zn^{2+} < AI^{3+}$

Hydration of Metal Ions

Which member of each pair would produce a more acidic solution & why?

1.) CuCl or $Cu(NO_3)_2$

2.) $CrCl_3$ or $NiCl_3$