Chapter Seven

The Electronic Structure of Atoms

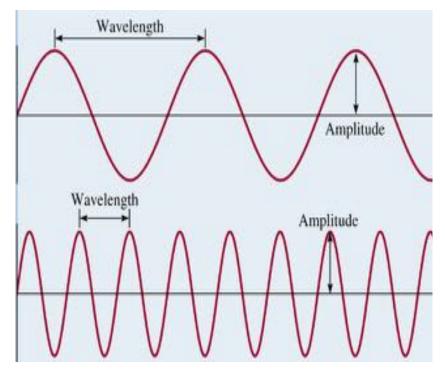
http://clipart-library.com

Wave Theory

Repeating disturbance spreading out from a defined origin
Characterized by wavelength, frequency and amplitude

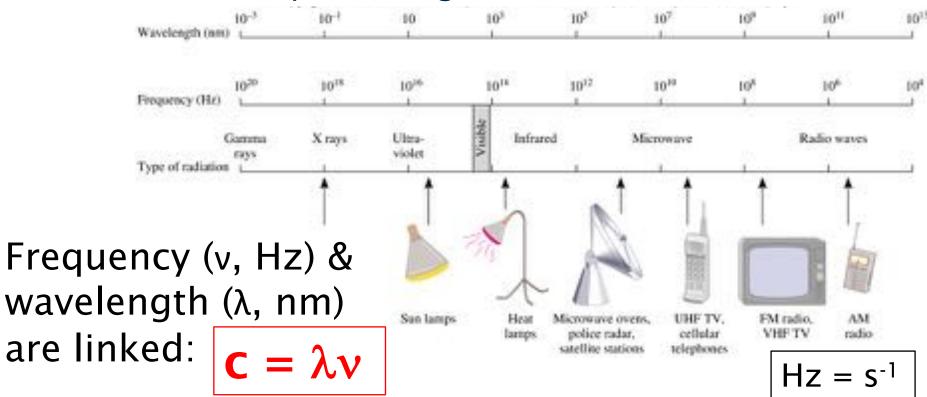
Wavelength (λ)

Wave


- •Distance between identical pts
- •Units some form of meters

Frequency (v)

- •Number of waves that pass through a point in 1 second
- Units of cycles/sec or Hz


Amplitude

- •Height of wave from center point
- Intensity of wave

Electromagnetic Radiation

- Emission/transmission of energy
- In form of waves
- Has electrical & magnetic components
- Travels at the speed of light ($c = 3.00 \times 10^8 \text{ m/s}$)

Using the relationship $c = \lambda v$: What is the wavelength of an FMradiowave with a 94.9 MHz frequency?

A: 3.16 m

4

Max Planck's Quantum Theory

Studied energy emitted by objects

• Amount of energy emitted was directly related to wavelength at which energy was emitted

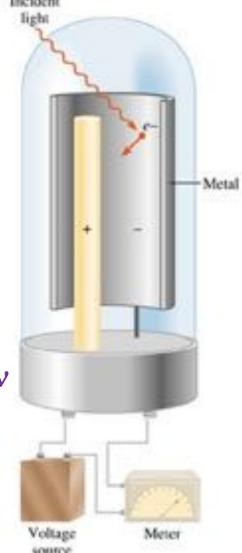
Theory: Energy must be in discrete amounts.

- Amounts were defined by λ (& v they are related!) $E = hv = hc/\lambda$
- Can have multiples of these discrete amounts E = hv, E = 2hv, E = 3hv ...
- h = Plank's constant = 6.626 x 10⁻³⁴ J s

Called the smallest amount of energy a Quantum.

Didn't know why, but math worked over entire spectrum

Einstein and the Photoelectric Effect


Experiment to prove why E = hv

- Full spectrum of light hits metal surface
- Energy transferred to electrons in metal
- Electrons break free and escape to anode
- Flow of electrons recorded with voltmeter
- Light energy must be at or above a certain frequency to dislodge electrons

Conclusions:

- Light energy has wave properties: E = hv &
- Light energy has particle properties

Particles of light were later called "photons"

Using E = hv ($h = 6.626 \times 10^{-34} Js$) What is the energy of a radiowave with a frequency of 94.9 MHz? A: 6.29 x 10⁻²⁶J

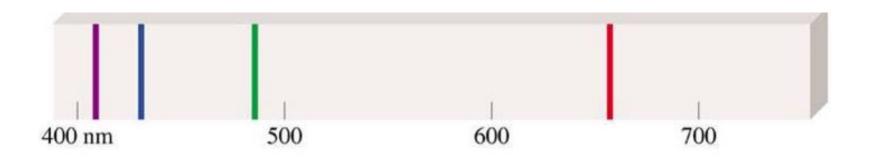
What wavelength has an energy of 1.00 x 10⁻²⁰J? A: 1.99 x 10⁻⁵ m Or 19.9 µm

Using E = hv (h = 6.626 x 10⁻³⁴ Js)

What is the energy per photon and per mole of photons of violet light, with a wavelength of 415 nm?

> A: 4.79 x 10⁻¹⁹ J/photon A: 2.88 x 10⁵ J/mol

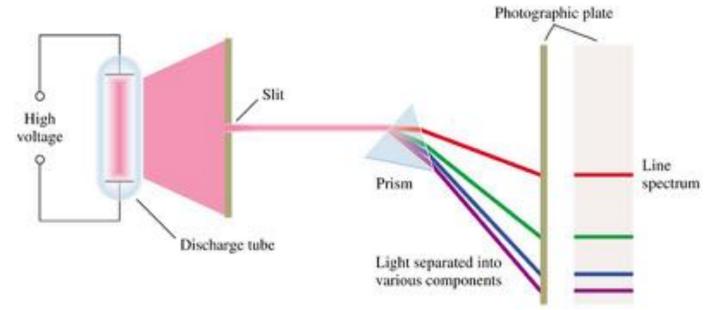
Continuous vs. Line Spectra


Continuous spectrum:

- Occurs when all visible light is present: white light

Line Spectrum

- Occurs when light is produced through an element
- Pattern of lines is characteristic of the element
- Can be used for identification of elements

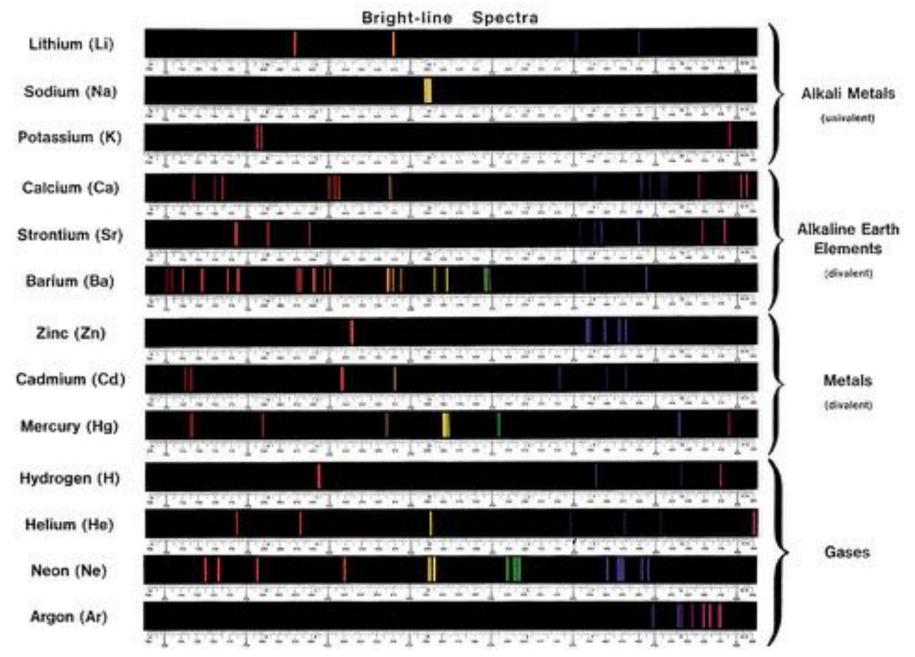


Bohr's Theory of the Hydrogen Atom

Emission Spectra: Pattern of radiation that is emitted when photons are removed from a substance.

Procedure

- Add energy to a substance
- Photons are emitted as a beam of light
- Separate wavelengths through a prism
- Record pattern on a photographic plate



Photon

n=1n=2

n = 3

Elemental Line Spectra

Bohr's Hydrogen Atom

Niels Bohr (1913): Electron energy (E_n) was quantized

- Only certain specified values allowed
- Stable levels called energy levels
- Photon absorbed/released when electron moves from 1 level to another The energy of each stable orbit: $E_n = -R_H/n^2$
 - *n* is the quantum number of the level
 - *n* is always an integer, 1,2,3,...etc.

Proportionality constant R_H

- Rydberg constant
- $R_{H} = 2.18 \times 10^{-18} J$

Leads to orbit description of atoms

Photon

n = 1

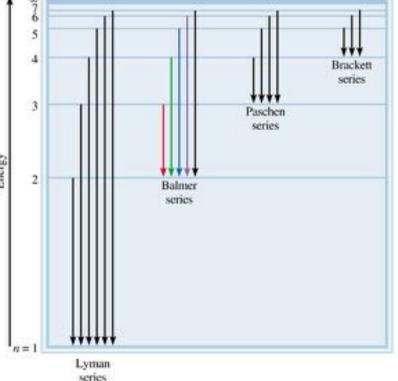
n=2

n = 3

Energy Level Calculations

All calculations done by comparing energy levels

- Electron moves between levels
- E = $-R_H (1/n_f^2 1/n_i^2)$


Energy emitted or absorbed

• <u>High to low level:</u>

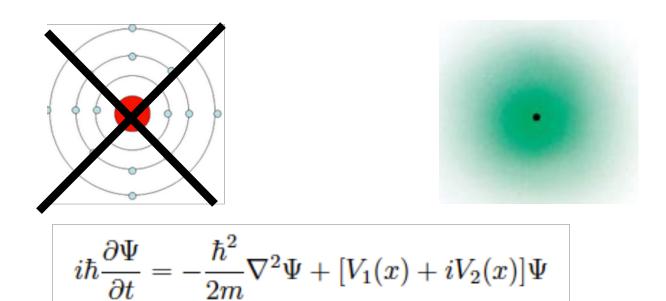
- energy released (-)

• Low to high level:

- energy absorbed (+)

Ground state: An e⁻'s lowest possible energy level Excited state: All other levels Calculate the wavelength of the electron shift from⁴ n = 4 to n = 2. Is light emitted or absorbed?

$$E = -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$


$$R_{\rm H} = 2.18 \text{ X} 10^{-18} \text{ J}$$

A: $\lambda = 486$ nm Visible blue green light is emitted (neg E value)

Modern View of the Atom: Quantum Mechanics – a very brief intro

15

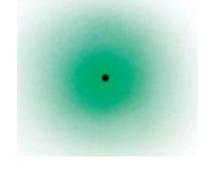
- (Nucleus in center, protons & neutrons in nucleus)
- Electrons outside nucleus
 - located in "cloud" surrounding the nucleus
 - likely location based on probability functions
 - quantum numbers used to describe probable location

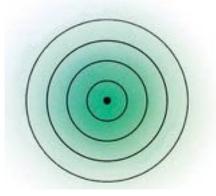
Quantum Numbers and Atomic Orbitals

Atomic orbital

- A region in space with a high probability of finding an electron.
- Identified by 4 quantum numbers.

4 Quantum Numbers (think of it as a dorm address)

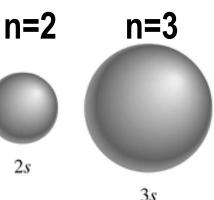

- 1. Principal quantum number (n): Building
- 2. Angular momentum quantum number (1) Floor
- 3. Magnetic quantum number (m_l)
- 4. Electron spin quantum number (m_s)


Room #

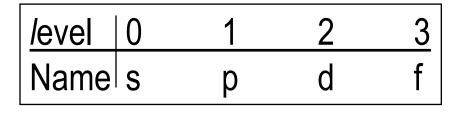
Bed

The Principal Quantum Number (n)

- Restricted to the positive integers: 1, 2, 3, 4, 5, 6, 7
- The shell or <u>energy level</u> of the orbital



n=1


1s

- Indicates the size of the orbital
 - max distance e⁻ can travel from nucleus
- Integers correspond to <u>row numbers</u> in Periodic Table
 - row an element is in tells you the highest energy level in the ground state

The Angular Momentum Quantum Number (*l*)¹⁸

- Indicates orbital shape
 Designation: s, p, d or f
- Designates the subshell
 - Values range from 0 to n-1
 - 0-6 theoretically, but realistically 0-3
 - Give rise to "Blocks" in periodic table

Energy Level (n)	Math	Allowed <i>l</i> values	Orbitals
1	1 - 1 = 0	0	s only
2	2-1 = 1	0, 1	s & p
3	3-1 = 2	0, 1, 2	s, p, & d

The Magnetic Quantum Number (*m*_l):

Determines the orientation in space of the orbitals

- "orientation" refers to proximity to axes (x, y, z)
- Integers from *l* to + *l*

Determines the <u>number</u> of orbitals in a subshell

• The number of possible values for $m_{\ell} = 2\ell + 1$

Orbital	l value	Allowed m _l values	Number of Orbitals per Energy Level
S	0	0	1
р	1	-1, 0, 1	3
d	2	-2, -1, 0, 1, 2	5
f	3	-3, -2, -1, 0, 1, 2, 3	7

Orbital Shapes = l quantum number

1.5

lanl.gov

 yz^2

 $z(x^2 y^2)$

35

 $x(x^2-3y^2)$

 $y(3x^2y^2)$

l = **0**: **s** orbitals

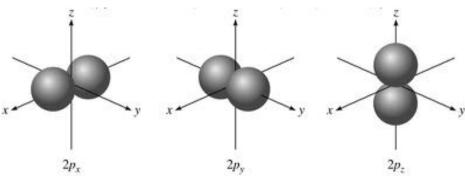
- Spherical
- One per energy level
- l = 1: p orbitals
 - 2 teardrops joined at center *
 - Three per energy level

l = 2: *d* orbitals

- Most are like two p orbitals along different axes
- 5 per energy level
- *l* = 3: f orbitals.
 - Complicated shapes
 - 7 per energy level

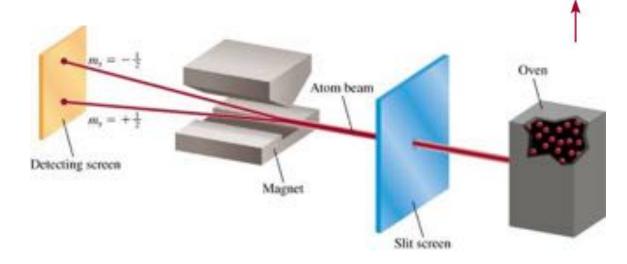
Orbitals with same n & l values are "degenerate"

degenerate = same energy


(Note: In some cases there are slight energy differences)

Possible quantum numbers for an electron in a 3p orbital:

n = 3


 ℓ can be 0 to 3-1 (0, 1, 2) BUT if it is a p orbital $\ell = 1$ m_{ℓ} can be $+\ell$ to $-\ell = -1, 0, +1$

Since the 3p orbitals are degenerate, any of the three m_l values could be correct

Electron Spin Quantum Number (m_s)

- A magnetic field is induced by the moving electric charge of an electron as it spins
 - Opposite spins cancel one another
 - No net magnetic field for the pair
 - Allows 2 electrons to occupy 1 orbital
 - Unpaired e⁻ lead to magnetism
- Two possible values: +1/2 and -1/2

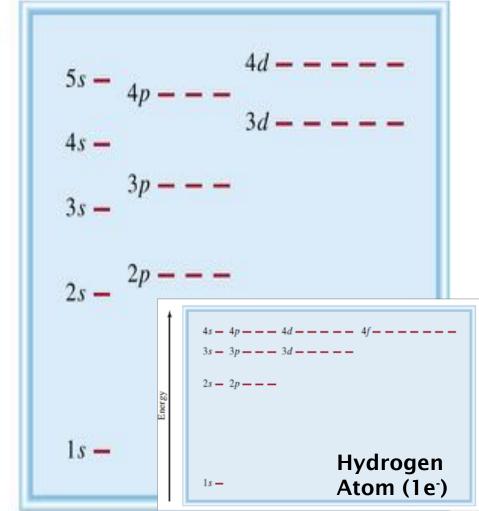
Quantum Numbers Summary

TABLE 7.2		Relation Between Quantum Numbers and Atomic Orbitals									
n l		m _e	Number of Orbitals	Atomic Orbital Designations							
1	0	0	1	1s							
2	0	0	1	25							
	1	-1, 0, 1	3	$2p_x, 2p_y, 2p_z$							
3	0	0	1	35							
	1	-1, 0, 1	3	$3p_x, 3p_y, 3p_z$							
	2	-2, -1, 0, 1, 2	5	3dx, 3dx, 3dx,							
				$3d_{xy}, 3d_{yz}, 3d_{xz}, 3d_{xz}, 3d_{x^2-y^2}, 3d_{z^2}$							
	100	13	10								
:	-	1	1	1							

A possible set of quantum numbers for the last electron added to complete an atom of selenium would be:

n:

l:


m_l:

m_s:

Electron Configuration: 25
 Finding a home for each electron
 The energy of an electron is defined by both n & l

- Principle shells (size)
 n = 1,2, 3, 4 or 5
- Subshells (shape)
 - $\ell = 0, 1, 2, \text{ or } 3$
 - n determines number of subshells
 - s, p, d, f orbitals
 - <u>Shielding</u> impacts relative energies

Many-electron atom (f subshell not shown)

Rules & Principles Governing e⁻ Configurations²

Pauli Exclusion Principle:

- No 2 e⁻ in an atom can have the same set of 4 quantum #s
 - If in the same orbital, e^{-} must have opposite spins $\uparrow \downarrow \uparrow \downarrow$

Hund's rule:

- Electrons in the same subshell occupy degenerate orbitals singly, before pairing
 - Degenerate = same energy

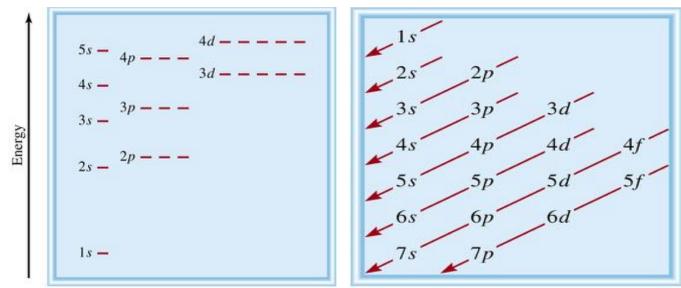
Ex: Oxygen, O Z = 8

 $\frac{\uparrow\downarrow}{1s} \frac{\uparrow\downarrow}{2s} \frac{\uparrow\downarrow}{2p} \frac{\uparrow}{2p} \frac{\uparrow}{2p}$

The Aufbau Principle:

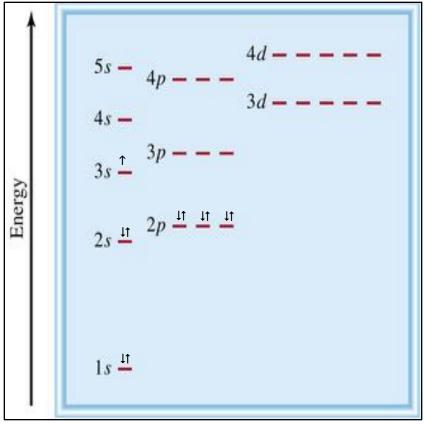
- In general, each successive electron added to an atom occupies the lowest energy orbital available
 - There are some exceptions

 $(Z = 1) H = 1s^{1}$ (Z = 2) He = 1s² (Z = 3) Li = 1s²2s¹


1s

2s

Orbital Filling in Multi-electron Atoms


27

- Fill low to high energy
- 2 electrons per orbital
- Shielding impacts the energy of orbitals
- Use chart to account for overlap of n values 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s
- Format: spdf or orbital notation
- Ends when a home is found for each electron

Electron Configuration con't

- Defines the orbital ("home") for each electron
- # electrons = atomic number (Z) of atom (if neutral)
 - Max 2 electrons per orbital

Orbital Diagrams

- Energy increases from bottom to top

 Higher energy levels at top
- Boxes or lines represent orbitals
 - # lines at one level = # degenerate orbitals
- Arrows (1) represent e⁻
- 2 e⁻ allowed per orbital
 - one arrow up & one down
 to show the different spins

Formats for Electron Configurations

spdf Notation

- Front number = energy level
- Letter = type of orbital (s, p, d, or f)
 - Degenerate orbitals are combined together
- Superscript = # electrons in that type of orbital
 - Degenerate orbitals are combined, so the 1 superscript can be more than 2 if it is a p, d, or f orbital (p max 6, d max 10, f max 14)

Orbital Notation

- Number = energy level
- Letter = type of orbital
 - Degenerate orbitals are NOT combined
- Arrows = electrons
 - Put one e⁻ in each degenerate orbital before pairing
 - If 2 e⁻ in one orbital, one arrow must be up, the other down

Examples:

Ne: Z = 10 $1s^22s^22p^6$

Na: Z = 11 $1s^22s^22p^63s^1$

Example: C: Z = 6 $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\uparrow$ 1s 2s 2p 2p 2p

Writing Electron Configurations

Sulfur:

Vanadium:

Writing Electron Configurations for lons Remove Electrons from Highest Energy Level First

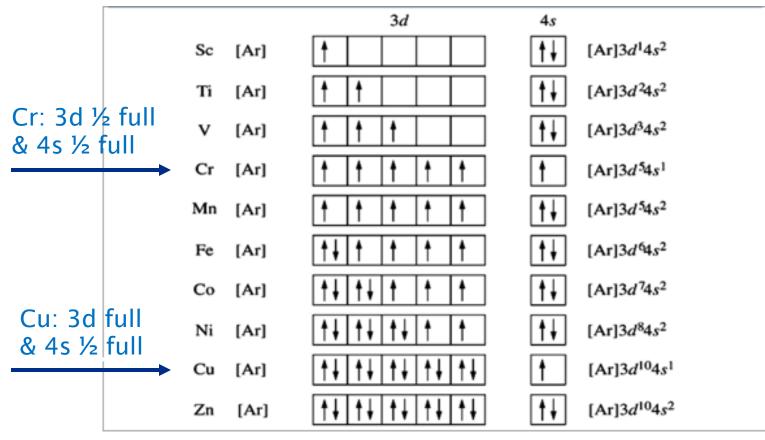
31

Magnesium ion (Mg²⁺):

```
Fluorine ion (F<sup>-</sup>):
```

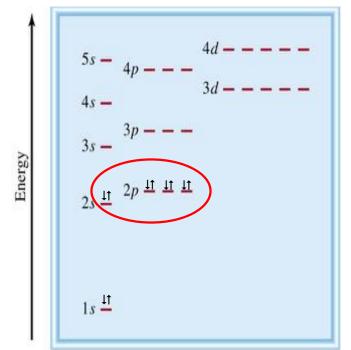
```
Manganese (II) ion (Mn<sup>2+</sup>):
```

Noble Gas Configuration


- Abbreviation of Electron Configuration (ex: Na: [Ne]3s1)
- Noble gas symbol replaces the portion of the e⁻ config. that is identical to the e⁻ config. of the noble gas.
- Always use the largest noble gas that is smaller than the element
- Can use for either spdf or orbital notation
- ex: Arsenic regular configuration: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p³

• ex: Strontium

regular configuration: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²


Exceptions To The Aufbau Principle Half filled & filled subshells provide additional stability Cr and Cu ½ fill/fill their 3d shell before the 4s shell. Elements in same columns as Cr & Cu behave in same way. Similar behavior seen in p block.

Cr & Cu are the only exceptions you need to know.

Magnetism in Multi-electron Atoms

- +1/2 & -1/2 spins will cancel if electrons paired
- No magnetic properties without spin present
 - # unpaired electrons proportional to magnetic properties

Paramagnetic

At least 1 unpaired electron Fe: 1s²2s²2p⁶3s²3p⁶4s²3d⁶

Quantum Numbers, Electron Configuration, ³⁵ & the Periodic Table

- Principle quantum number, n
 - Row number of periodic table, values of 1-7
- Angular momentum quantum number, *l*
 - Specific area of periodic table, spdf "blocks"
- Can follow the periodic table to fill e⁻ configuration
- Can use location on Periodic Table to determine where e⁻ configuration will end

15	57 J.J.		2222	1.5
25			2 <i>p</i>	
35		÷.	3 <i>p</i>	
45	3d		4p	
55	4d		5p	
65	5d		6p	
75	6d		7p	

4f	
5f	

Electronic Configurations and the Periodic Table

Add 1 electron for each square (ie element) in the Periodic Table

IA																	8A
- H H	2 2A		Electrons in the outermost energy level are the										14 4A	15 5A	16 6A	17 7A	He
-13	V.F.A.		valence electrons.											****** 21/2/	8 0 2/2/	i.	10.2.2
-22	12 Mg 30	3 3B	4 4B	5 50	6 68	7 7B	8	9 	10	11 1B	12 28	13 M 343pt	14 54 363pi	15 # 3/3/2	25 5 31730*	17 11 363pt	18 Ar 343p
243	200	21	11 F	17 4000	24 Cr 4/56	23 Min 4/3/	25 27 2024	27 Ce 4+'54'	Seu .	29 Ca 8/3/	20	=34	100	33 - A5 - 5/(Qp)	14 Se Artigre	25 Br 4:44	-
30 Rh 54	1.57	200	40 Zr 5/4/	41 335 341641	42 34e 5/44	10 Tr 5747	41 Rs 15'41'	45 88 5740	1000	47 AR 5/42	45 Cil 500000	0) In 3/3/	50 50 50 50	ti da ti ti da ti	52 Te 223gri	50 1 5034	51 5754
201	55 54 67	57 La 5/32	73 10 6/5/	70 Та 6/30	38 5750	75 8a 64755	76 On 6/5/	77 br 6/54	n	79 30 6755	10 Hg 0/501	H H Sr'tp'	Nº PB 6/1pt	83 Bi 49'0p'	SA Pe Calify	KS M Seller	ali Ra tuʻtuʻ
22%	45 84 72	10 2/10	004 \$67 76 ¹ 94	103 Db 7/%a ¹	100	107 Bh 2454	10X His TuYut ^a	ini Mk Zahoj ^a	110 Di 7/16 ¹⁰	111 Rg Total	112 7/14/10	(11)0	111 3/3/	1000	118 Tr75pi	1175	(110)
			1					_	_	_		_	_				
				35 G 34 ¹ 4 ² 34 ²	2.4	10 10 10 10	=4	13. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	224	H G H	an B Seat	$\frac{2}{2}$	2. 10 10 10 10	11.2.4 11.2.4	100	20 55 6/10 ¹⁴	La La La
				n.	- The second		No.	No. Port	51 400 2257	. Chu	-	11 11 11 11	10 M	in the second	an Ma Mar	112 Not 1/2/10	No.