- 1. During a titration the following data were collected. A 100.0 mL portion of an HCl solution was titrated with 0.500 M Ba(OH)₂; 200.0mL of the base was required to neutralize the sample.
 - Write the balanced chemical equation.

b. What is the molarity of the acid solution?

0.500
$$\frac{\text{mol Ba(OH)}_2}{\text{K}} \times \frac{0.200 \text{K}}{1} = 0.100 \frac{\text{Ba(OH)}_2}{\text{C}} \times \frac{2 \text{mol HCl}}{1 \text{ mol Ba(OH)}_2} = \frac{0.200 \text{mol}}{0.1000 \text{L}}$$
c. How many moles of acid are present in 2.0 liters of this unknown solution?

2. a. Calculate the value of x if 6ln7x = 9.8. Round to 3 decimal places.

$$a(3x+32)=1.2$$

 $a(3x+32)=1.2$
 $a(3x+32)=1.2$

$$-\frac{1}{5} + 6e^{x} = 44$$

$$+5 + \frac{1}{5}$$

$$6e^{x} = 44$$

$$6x = 8.166667$$

$$x = 2n(8.166667)$$

$$= 3.100061$$

$$= 3.100061$$

- 3. The rate at which hydrogen gas reacts in the reaction $N_2 + 3H_2 \rightarrow 2NH_3$ is 0.050 atm/s. The initial concentration of hydrogen is 1.55atm
 - a. What is the rate of formation of ammonia in atm/s at the time the hydrogen rate was measured . Include both the sign and the value in your answer.

b. If this were a first order reaction, sketch a brief LINEAR graph to describe the disappearance of the H₂(g) over time. Be sure to label the axes.

c. If the rate constant for this first order reaction is 0.24/min, what is the pressure of the hydrogen at 2.2minutes?

$$ln[H_a] = -kt + ln[H_2]_0$$

 $ln[H_a] = -(0.24)(2.2 min) + ln[1.65 atm]$ [$Lh_a] = 0.91 atm$]
 $ln[H_a] = -0.528 + 0.438255$
 $ln[H_a] = -0.089745$ [$Lh_a] = e^{-0.089745} = 0.9142 atm$

- 4. $(14.2g+3.46g+9.052g) \times 1.5\times10^{-4} = x$
 - a. Solve for x and write your answer in scientific notation and units.

b. How many significant figures should be in your answer?

c. Convert your answer into milligrams from grams.

$$4.0 \times 10^{-3} g \left(\frac{1000 \text{ mg}}{g} \right) = 4.0 \text{ mg}$$

5. For the reaction, A + 2 B \rightarrow C + 2 D, some measurements of the rate of reaction at varying concentration gave the following data.

	-	r Di	
run #	[A]	[B]	rate, mol L ⁻¹ s ⁻¹
1	0.20	0.20	1.0
2	0.20	0.40	2.0 -
3	0.60	0.40	2.0
		/	

a1. Calculate the order with respect to A.
$$(0.60)^{m} = (2.0)^{m} = (3)^{m} = (3)^{m} = (3)^{m} = 0$$
 (zero)

a2. Calculate the rate constant of the reaction.

order in B: $(0.40)^{n} = 2.0$
 $(0.20)^{n} = 2.0$
 $(0.30)^{n} = 2.0$

order in B:
$$(0.40)^{2}$$
 $\frac{20}{1.0}$

he reaction.

$$2^{n} = 2 \quad n = 1$$
 $1.0 \text{ M/s} = k \left[0.20]^{8} \left[0.20]^{1} = k = 58^{-1} \quad 2.0 \text{ M/s} = k \left[0.40]^{8} \right] = k = 58^{-1} \quad k = 58^{-1}$
 $2.0 \text{ M/s} = k \left[0.20]^{8} \left[0.40\right]^{1} = k = 58^{-1} \quad k = 58^{-1}$

b. Write the rate law for this reaction.

c. What concentration of B would you need to maintain a rate of 1.0mol L-1s-1 if [A] = 6.0M?

[A] a zero order -> changing [A] does not change rate

- 6. For the following polyatomic ion: SO₄²
 - a. What is the name of this ion?

b. Write the oxidation numbers of both elements in the ion.

b. Write the oxidation numbers of both elements in the ion.

$$\begin{array}{c}
(-2) \\
(-2) \\
(-2) \\
(-2) \\
(-3) \\
(-4) \\
(-6) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8) \\
(-8$$

You should be able to recognize rames & formulas of acids based on their similarities to the ions involved leg pick a name or formula from options) but I do not expect you to have them memorized yet.

7. A reaction mechanism contains the following elementary reactions:

Step 1:
$$2A + B \rightarrow 2C+D$$

Step 2: $2C \rightarrow D$

a1. What is the order of Step 1 with respect to A? 2nd order (coefficient of A 62) a2. Write the rate law for Step 1.

b1. Which reaction would be considered the rate limiting step? Stop A \rightarrow termoleculour b2. Identify an intermediate in this mechanism.

c. What is the overall reaction described by these elementary reactions?

lementary reactions?

$$2A + B \rightarrow 2E + D$$
 $3E \rightarrow 2E + D$
 $3E \rightarrow 2E \rightarrow D$
 $3E \rightarrow D$

- The rate constant for a first order decomposition reaction is 0.051 min⁻¹.
 - a. If the initial concentration the reactant is 2.5M, calculate the half-life of the reaction.

1st
$$t_{12} = \frac{0.693}{k} = \frac{0.693}{0.051 \text{ min}^{-1}} = 13.6 \text{ min}$$

b. What is the concentration of the reactant at $t_{1/2}$?

is the concentration of the reactant at
$$t_{1/2}$$
?
$$2n (A) = -k \pm + 2n (A) 0$$

$$ln[A] = -kt + ln[A]o$$

 $ln[A] = -(0.051 min-i)(13.6 min) + ln(a.5 M) [A] = 1.25 M$
 $ln[A] = -0.693 + 0.91629$ or for the short version: $\frac{1}{4}(2.5 min)$

$$Ln[A] = -(0.051 \text{ min}^{-1})(13.6 \text{ min}) + Ln[A] = -(0.051 \text{ m$$

no → not zero order

$$ln[A] = -kt + ln[A]_0$$

 $ln[A] = (-0.05|min^{-1})(t) + ln[A]_0$