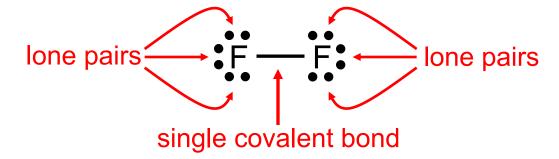
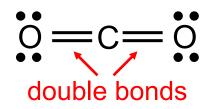

Chemical Bonding

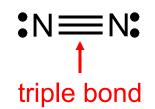

Lewis Structures

Lewis structures represent covalent bond formation Want to create 8 electrons around each atom: octet

Bonding Pairs: Shared electrons count for both atoms

Lone Pairs: Non-shared electrons count for 1 atom




Multiple Bonds

More than one pair of electrons is shared between atoms so each atom can form an octet.

- Single Bond: Double bonds: Triple bonds:
- 1 shared pair:
 2 shared pairs:
 3 shared pairs:
- 1 dash (-) 2 dashes (=) 3 dashes (\equiv)

Allows atoms in the Lewis structure to share extra electrons if there are not enough for the central atom

Writing Lewis Structures: General Information Electronegativity

Central atom usually has the *lowest* electronegativity (atom lower or to the left in periodic table) Terminal atoms (except H) have *higher* electronegativities

Terminal Atoms

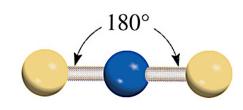
Bonded to only one other atom Hydrogen atoms are terminal atoms

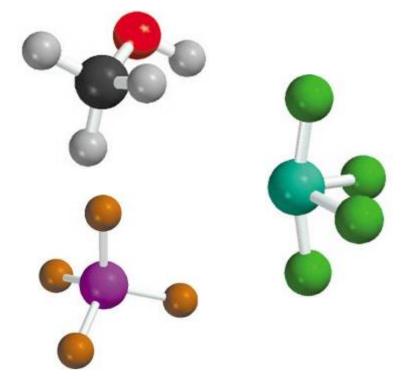
Bonding

Hydrogen atoms are bonded to oxygen atoms in oxoacids Make the molecule as symmetrical as possible

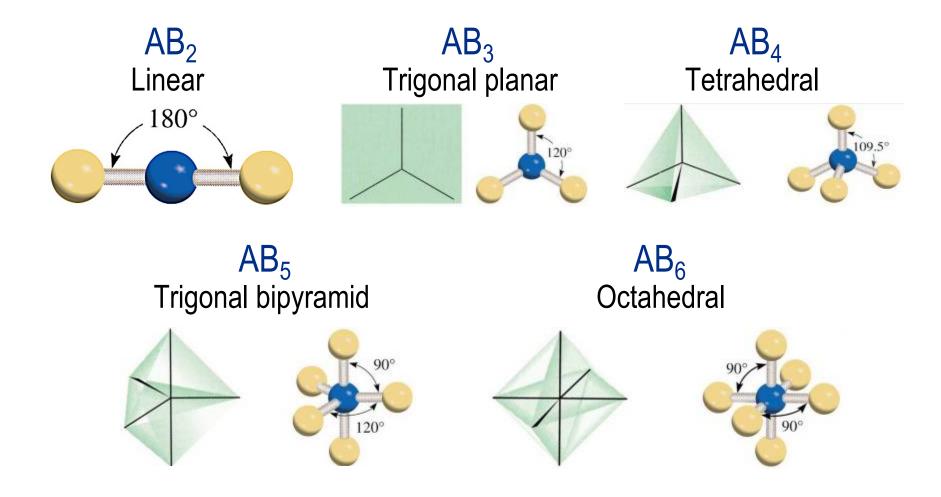
Write the Lewis Structure of HNO

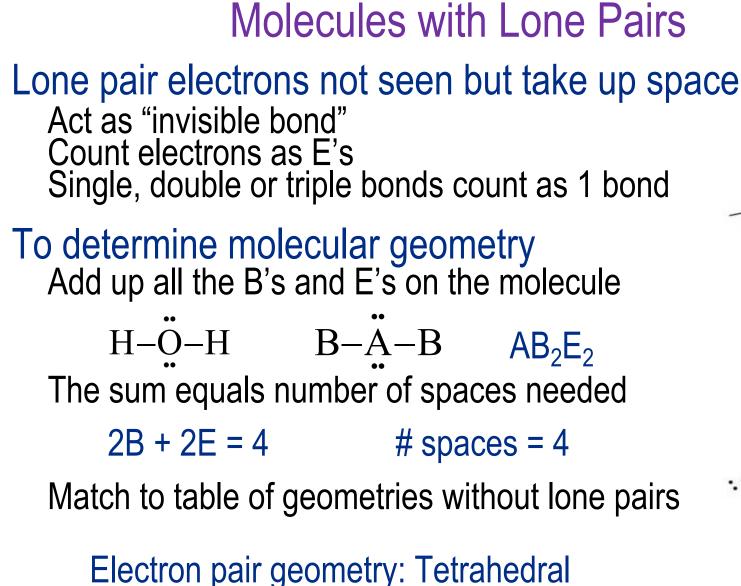
1. Add up the valence electrons in the structure 1 (H) + 5 (N) + 6 (O) = 12 valence electrons


- 2. Arrange the atoms & place bonding electrons H - N – O nitrogen less electronegative, put in the center
- 3. Place e- pairs around terminal atoms $H-N-\ddot{O}$:
- 4. Place remaining electron pairs on central atom $H = \dot{N} = \ddot{O}$: 5. Add double bond to finish nitrogen octet $H = \ddot{N} = \ddot{O}$


The Valence-Shell Electron-Pair Repulsion (VSEPR) Method based on the idea that pairs of valence electrons in bonded atoms repel one another.

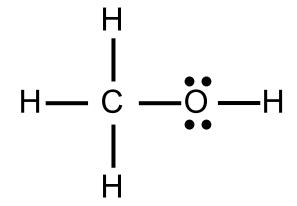
Assumes electron pairs try to get as far apart as possible Each electron pair or bond takes up ~ same amount of space # of bonds or pairs determines molecular geometry

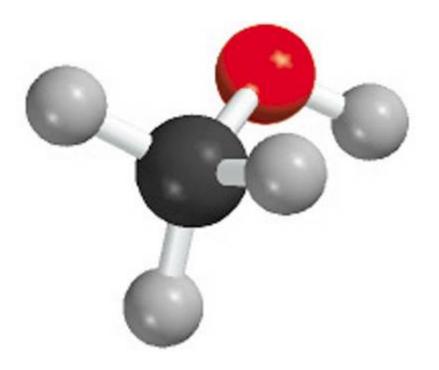

Molecular Geometry:


The shape of a molecule that describes the location of nuclei & the connections between them.

Molecules with No Lone Pairs Bond angles due to # of repulsions Each bond takes up space of 1 electron pair

Molecular Geometry: Bent

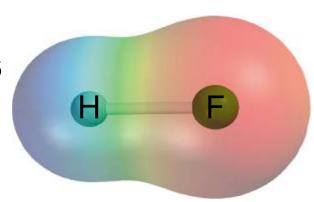

Table 10.2 Geometry of Simple Molecules and Ions in Which the Central Atom Has One or More Lone Pairs										
Class of Molecule	Total Number of Electron Pairs	Number of Bonding Pairs	Number of Lone Pairs	Arrangement of Electron Pairs*	Geometry of Molecule or Ion	Examples				
AB ₂ E	3	2	1	B B Trigonal planar	Bent	SO ₂				
AB3E	4	3	1	$B \xrightarrow{I}_{B} B$ Tetrahedral	Trigonal pyramidal	NH ₃				
AB ₂ E ₂	4	2	2	A B Tetrahedral	Bent	H ₂ O				
AB_4E	5	4	1	Trigonal bipyramidal	Distorted tetrahedron (or seesaw)	SF4				
AB ₃ E ₂	5	3	2	B A B Trigonal bipyramidal	T-shaped	CIF ₃				
AB ₂ E ₃	5	2	3	B B Trigonal bipyramidal	Linear					
AB ₅ E	6	5	1	B B Octahedral	Square pyramidal	BrF5				
AB ₄ E ₂	6	4	2	B B Octahedral	Square planar	XeF ₄				


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Molecules with More than 1 Central Atom VSEPR must be done separately for each atom May result in a different molecular geometry around each one

Methanol CH₃OH

C: 4 spaces: tetrahedral O: 4 spaces: bent



Oxoacids: Hydrogen goes on oxygens HNO_3 , H_2SO_4 , etc. will also use this method

Electronegativity and Polarity

Electronegativity

The ability of an atom to attract electrons F is the most electronegative atom Nonmetals high electronegativies

							Increas	ing elec	tronega	tivity	_						
1A																	8A
Н 2.1	2A											3A	4A	5A	6A	7A	
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	0 3.5	F 4.0	
Na 0.9	Mg 1.2	3B	4B	5B	6B	7B		-8B-	_	1B	2B	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0	
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 3.0
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe 2.6
Cs 0.7	Ba 0.9	La-Lu 1.0-1.2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2	
Fr 0.7	Ra 0.9																

Predicting Polarity: NH₃


AB₃E

Predict molecular shape. VSEPR

Tetrahedral

Predict bond dipoles. H less electronegative than N lone pair more electronegative than N

Bond dipoles cancel or combine? Combine: Polar molecule

Resonance Theory

If a molecule or ion can be represented by 2 or more Lewis structures that differ only in electron location, the true structure is a composite of them.

$$\underbrace{O}_{-1} - \underbrace{S}_{+1} = \underbrace{O}_{0} \leftrightarrow \underbrace{O}_{0} = \underbrace{S}_{-1} - \underbrace{O}_{-1}$$

Resonance Structures

Equivalent Lewis structures that can be drawn for a molecule Formal charges will usually be present

Delocalization Electrons are spread out over several atoms Stabilizes molecule

Formal Charge

Difference between the # of valence electrons in a free atom & the # of electrons assigned to that atom in a Lewis structure.

F.C. = Group # - (# of lone e- + # bonds)

Molecule is most stable if formal charge is 0 for each atom.

H - N = O	\dot{O} - \dot{S} = \dot{O}
H: = 1-(0 +1)= 0	O: = 6-(6 +1)= -1
N: = 5-(2+3)= 0	S: = 6-(2 +3)= +1
O: = 6-(4+2)= 0	O: = 6-(4 +2)= 0

The most likely Lewis structure has the lowest formal charges Negative formal charge must be on more electronegative atom Sum of formal charges must =0 for molecules or = ionic charge

Recitation Questions

Answer the following questions about this compound: SO₂

- 1. Draw both Lewis structures for this compound. (resonance)
- 2. Give the VSEPR notation for the central atom in this structure.
- 3. Identify the molecular geometry on each central atom.
- 4. Show the polarity of the molecule using arrow notation.
- 5. Is the molecule polar or nonpolar?
- 6. Give the formal charge for all atoms.