

Properties of Gases Occupy the entire volume of their container Compressible Flow readily and mix easily Have low densities, low molecular weight

Elements	Compounds		
H ₂ (molecular hydrogen)	HF (hydrogen fluoride)		
N2 (molecular nitrogen)	HCl (hydrogen chloride)		
O2 (molecular oxygen)	HBr (hydrogen bromide)		
O ₃ (ozone)	HI (hydrogen iodide)		
F2 (molecular fluorine)	CO (carbon monoxide)		
Cl ₂ (molecular chlorine)	CO ₂ (carbon dioxide)		
He (helium)	NH ₃ (ammonia)		
Ne (neon)	NO (nitric oxide)		
Ar (argon)	NO2 (nitrogen dioxide)		
Kr (krypton)	N ₂ O (nitrous oxide)		
Xe (xenon)	SO ₂ (sulfur dioxide)		
Rn (radon)	H ₂ S (hydrogen sulfide)		

The Combined Gas Law and the Ideal Gas Constant Combines all three laws by means of varying the volume

Boyles Lawconstant = PV P_1V_1 P_2V_2 Charles's Lawconstant = V / T n_1T_1 n_2T_2 Avogadro's Lawconstant = V / n n_1T_1 n_2T_2

STP: Standard Temperature and Pressure = 1atm 273K

$$\frac{P_1 V_1}{n_1 T_1} = \frac{1atmx 22.4L}{1molx 273K} = \frac{0.0821Latm}{molK} = R$$

Ideal Gas Constant: $R = \frac{0.0821Latm}{mol K}$

Acts as 1 side of combined gas law

Using the Ideal Gas LawIdeal Gas Law PV = nRT
Must convert units to match R $R = \frac{PV}{nT} = \frac{0.0821Latm}{molK}$

Identify the noble gas if 23.6 g exerts a pressure of 1293 torr at 37°C in a 17.5-L container?

Convert T and P: T = 37 °C = 310.15 K $P = \frac{1293torr}{1} X$ $\frac{1atm}{760torr} = 1.70atm$ $n = \frac{1.70atm}{1} x \frac{17.5L}{1} x \frac{molK}{0.0821Latm} x \frac{1}{310.15K} = 1.17mol$ Solve for moles

Find molar mass $MM = \frac{23.6g}{1.17mol} = 20.2g/mol$

Identify noble gas Neon: MM20.17g/mol

A 16.4-g sample of a gas at 25.0 lb/in² and 25.0°C is confined in a 17.5 L container. This gas is moved to a 28.5 L container at 100.0°C and 14.0 lb/in². How much gas was removed or added?

Get equation:

$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2} \qquad n_2 = \frac{n_1 T_1 P_2 V_2}{T_2 P_1 V_1}$$

Use gas masses, not moles Convert temp. to Kelvin Pressure units cancel: Volume as written:

$$\begin{array}{ll} n_1 = 16.4g & n_2 = ? \\ T_1 = 298K & T_2 = 373K \\ P_1 = 25.0 \ \text{lb/in}^2 & P_2 = 14.0 \ \text{lb/in}^2 \\ V_1 = 17.5L & V_2 = 28.5L \end{array}$$

$$n = \frac{16.4g}{1} x \frac{298K}{373K} x \frac{14.0lb/in^2}{25.0lb/in^2} x \frac{28.5L}{17.5L} = 11.9g$$

16.4g of gas at start - 11.9g after moving it = 4.5g removed

Stoichiometry and Gas Laws What volume in liters of CO (g) at 250°C and 0.904 atm is produced from 453.6g Fe₂O₃ (s) in the following reaction: Fe₂O₃ (s) + 3C (s) \rightarrow 2Fe (s) +3 CO (g) Determine # moles of CO (g) produced to get n $?mol_{co} = \frac{453.6g_{Fe_2O_3}}{1} \times \frac{1mol_{Fe_2O_3}}{159.6g_{Fe_2O_3}} \times \frac{3mol_{CO}}{1mol_{Fe_2O_3}} = 8.52mol_{co} = n$

Use the ideal gas law to determine the volume

$$V = \underline{nRT}$$
 $n = 8.52 \text{ mol}$ $R = 0.0821 \text{ L atm} / \text{ mol K}$ P $T = 523.15 \text{ K}$ $P = 0.904 \text{ atm}$

$$V = \frac{8.52mol}{1} x \frac{0.0821Latm}{molK} x \frac{523.15K}{1} x \frac{1}{.904atm} = 405L$$

Dalton's Law of Partial Pressures

$$P_{total} = P_1 + P_2 + P_3 + \cdots$$

The <u>Partial Pressure</u> is the pressure exerted by each individual gas in the container.

$$P_1 = (n_1RT)/V; P_2 = (n_2RT)/V; and so on$$

The Mole Fraction is the fraction of all the molecules in a mixture that are of a given type.

$$P_{1}/P_{total} = n_{1}/n_{total} = x_{1}$$
$$P_{1} = x_{1} \cdot P_{total}$$

Mixtures of Gases Dalton's Law of Partial Pressures

IN your experiment, you have water vapor mixed into the hydrogen gas

Collection of Gases Over Water

An gas is collected into a container of water The water saturated gas rises and displaces liquid water The <u>vapor pressure</u> is the partial pressure of the water vapor It must be deducted from the measured pressure of the gas

$P_{total} P_{atm} = P_{gas} +$	Pwater(g)	$P_{gas} = P_{atm}$	- P _{water(g}
KClO ₃ and MnO ₂	ed with oxygen gas	Temperature (°C)	Water Vapor Pressure (mmHg)
A CONTRACTOR		0	4.58
		5	6.54
	i	10	9.21
		15	12.79
		20	17.54
Nu a		25	23.76
		30	31.82
		35	42.18
		40	55.32
		45	71.88
Bottle filled with water ready to be placed in the placet pasin	Bottle full of oxygen gas	50	92.51