Measurements and Density 1

Physical and Chemical Properties of Matter

<u>Physical Properties: No change to molecular composition</u> Changes are at the substance level: breaking glass Phase changes: solid to liquid to gas etc. ID without damage: Original compound can be recovered Color, odor, solubility, density, molecular mass

Chemical Properties: Compositional changes to molecules All chemical reactions: often called chemical change Heat or light generated: Burning, decomposing Original material changed on an atomic level Molecules of original compound no longer present Compound cannot be restored to its original form without another chemical change **Extensive and Intensive Properties**

Extensive Property: Varies on amount of matter present mass, length, volume, heat, intensity of color or odor

Intensive Property: Independent of amount of matter present Temperature, boiling point, color, odor

> Often a calculated ratio: Density (mass/vol ratio) Molar mass (grams/mol)

Can be used to identify a material

Scientific Notation

Displaying very large or small numbers $1700000 \rightarrow 1.7 \times 10^{6}$ $0.0000017 \rightarrow 1.7 \times 10^{-6}$

2 parts: significant values & a multiplierSignificant:17 for both valuesMultiplier:100000 or0.000001

Keep all significant numbers Place decimal after 1st significant figure (1.7)

Multiplier used as exponent: $10 \times \text{ or } 10^{-x}$ $1\underline{700000} = 1.7 \times 10^{6}$ $0.\underline{000001}7 = 1.7 \times 10^{-6}$

Use EXP, SCI or EE keys on calculator

Significant Figures: Number of Digits in Final Answer

- 1. All non-zero digits are significant
- 2. Use decimal point to determine significance of zeros

Between 2 numbers Before decimal point Before the first digit End of # after decimal No decimal point:

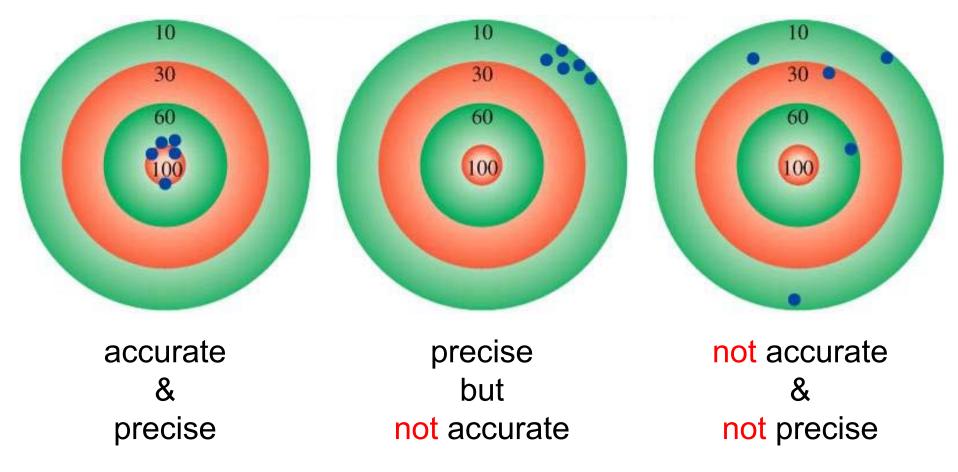
significant not significant not significant significant can't tell <u>50.002</u> 0.<u>502</u> 0.00<u>52</u> 0.0200 500

3. Exact numbers have unlimited number of significant figures

Inherently an integer: Inherently a fraction: Obtained by counting: Defined quantity: 4 sides to a square
¹/₂ of a pie
47 people in a class
12 eggs in a dozen

Determine the correct number of significant figures (12.45 - 9.2680) x 3.575 = 9.71685

Addition/subtraction (12.<u>45</u> - 9.<u>2680</u>) = 3.182 2 sigfigs after decimal 3 sigfigs overall in final answer Sigfigs based on decimal


6

12.45<mark>XX</mark> - 9.2680 <u>3.18</u>20

Multiplication/Division
 $3.182 \times 3.575 = 9.71685$ Use all significant digits
3 sigfigs in final answer
Addition limits sigfigsRounding
9.71685 = 9.72
round up 6>5Based on number after sigfigs
If < 5</th>If < 5</th>Use number as written
If ≥ 5

Precision and Accuracy

<u>Accuracy</u> – how close a measurement is to the true value <u>Precision</u> – how close measurements are to each other

Deviation

Deviation = (experimental value – true* or average value)

Systematic:

Deviations in same direction, either all high or all low Can often be minimized mathematically or eliminated Measurement of accuracy

Random:

Deviations go both high and low Cannot be eliminated mathematically Need better data collection method with more sigfigs Measurement of precision

*True or "real" value: Accepted or industry standard value

Percent Error and Percent Difference

Percent Error:

Measure of accuracy Deviation: (experimental value- true value)

Percent Difference:

Measure of precision Deviation: (experimental value – average value)

Real value

% error = <u>Deviation</u> x 100 % difference = <u>Deviation</u> x 100 Average value

Dimensional Analysis Finding an answer by following units

How many kilograms of methanol will fill a 15.5 gallon fuel tank of a car modified to run on methanol?

Method:

1. What unit do you want to solve for? kilograms (kg)

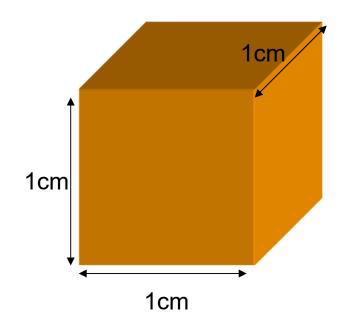
2. What information do you need?

Data given in problem:Volume = 15.5 gallonsData to look up:Density of methanol= 0.791 g / mLGallon to Liter conversion: 1gal= 3.785LData memorized:1000mL = 1L1000g = 1kg

3. Set up problem

$$\frac{kg}{1} = \frac{0.791g}{1ml} x \frac{1kg}{1000g} x \frac{1000mL}{L} x \frac{3.785L}{1gal} x \frac{15.5gal}{1} = 46.4kg$$

Base Units of Measurement International System of Units (SI) <u>Memorize Chart!</u>


TABLE 1.2	SI Base Units		
Base Quantity		Name of Unit	Symbol
Length		meter	m
Mass		kilogram	kg
Time		second	S
Electrical current		ampere	А
Temperature		kelvin	K
Amount of substance		mole	mol

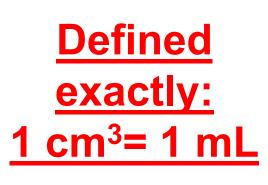

SI Base Prefixes Memorize Chart!

TABLE 1.3 Pre		fixes Used with SI Units	
Prefix	Symbol	Meaning	
tera-	Т	1,000,000,000,000, or 10 ¹²	
giga-	G	1,000,000,000, or 10 ⁹	
mega-	М	1,000,000, or 10 ⁶	
kilo-	k	1,000, or 10^3	
deci-	d	$1/10$, or 10^{-1}	
centi-	с	$1/100$, or 10^{-2}	
milli-	m	$1/1,000$, or 10^{-3}	
micro-	μ	$1/1,000,000, \text{ or } 10^{-6}$	
nano-	n	$1/1,000,000,000,$ or 10^{-9}	
pico-	р	$1/1,000,000,000,000,$ or 10^{-12}	

Volume

SI derived unit for volume is a cubic meter (m³) Common unit is a "Liter (L)"

Density

Density: Ratio of mass to volume of a material

density =
$$\frac{\text{mass}}{\text{volume}} = \frac{m}{V}$$

SI derived unit for density is kg/m³
1 g/cm³ = 1 g/mL = 1000 kg/m³

Substance	Density (g/cm ³)	
Air*	0.001	
Ethanol	0.79	
Water	1.00	
Mercury	13.6	
Table salt	2.2	
Iron	7.9	
Gold	19.3	

Intensive property Can be used to identify a material Units of mass and volume may vary Often grams/mL or grams/cm³

Concept Review Topics

- 1. Know terms given in the PowerPoint review and in the experiment.
- 2. Know difference between physical and chemical properties
- 3. Know difference between intensive and extensive properties
- 4. Reproduce calculations that were required to generate your results
- 5. Perform density calculations for both liquids and solids.
- 6. Understand the difference between percent error and percent difference and be able to calculate both values.
- 7. Show how to calculate a deviation and explain how the deviation of a series of measurements is related to a systematic vs. a random error.
- 8. Be able to calculate significant figures correctly.
- 9. Understand the concepts of accuracy and precision
- 10. Use dimensional analysis to solve density problems.