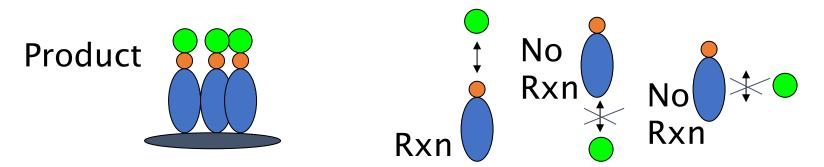

Chapter Fourteen: Chemical Kinetics

Rate of Reaction = speed

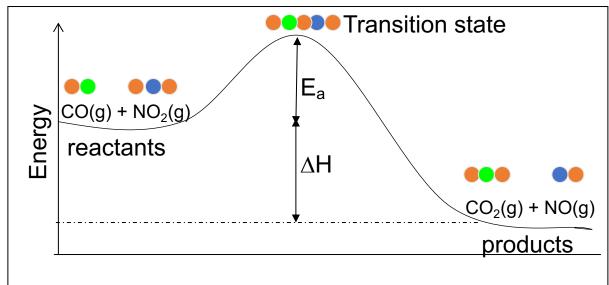


Kinetics = study of how fast reactions take place

Collision Theory

Three things must happen for a reaction to occur:

- 1. Reacting molecules must collide
 - Can increase the number of collisions with
 - increased reactant concentration
 - higher temps (= faster molecules)
- 2. Molecules must have the correct orientation


3. Activation Energy (E_a) must be exceeded

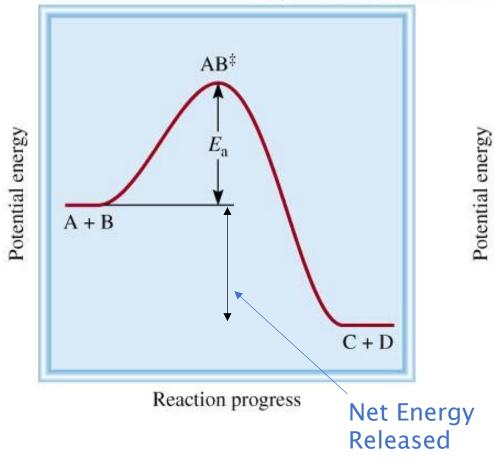
 E_a = minimum energy required for a reaction to occur

Energy Diagrams: Activation Energy & Transition State

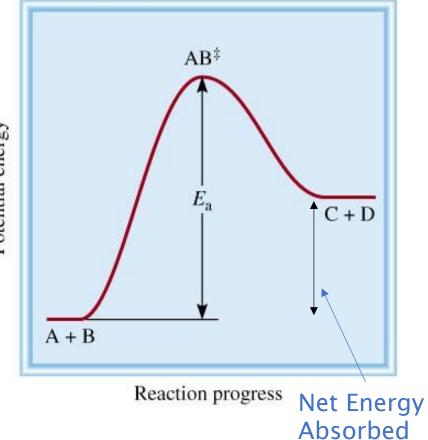
Given the following reaction:

$$CO(g) + NO_2(g) \rightarrow$$

 $CO_2(g) + NO(g)$

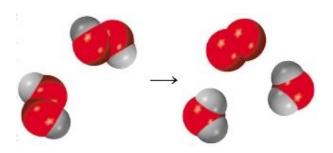

Reactants: Original components before a reaction **Products:** New elements/compounds formed from reaction

Transition State (aka Activated Complex): Temporary & generally unstable combination of atoms formed from molecular collision. Will be transformed into products as the reaction proceeds.


Energy Diagrams: Thermodynamics & Reaction Progress

$$A + B \rightarrow AB^{\dagger} \rightarrow C + D$$

Exothermic Reaction

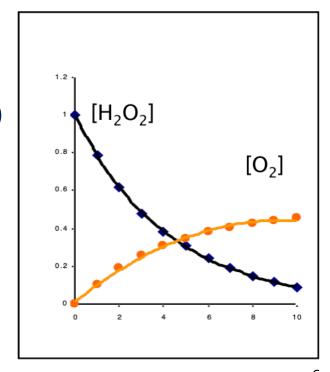

Endothermic Reaction

Reaction Rates

Kinetics:

- Study of rates of chemical reactions
- How fast does a reaction proceed?

Reaction Rate:

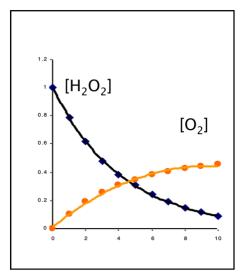

Rate =
$$\frac{\Delta \text{Concentration}}{\Delta \text{Time}} = \frac{[\text{mol/L}]}{\Delta \text{T}} = \frac{M}{\text{sec}}$$

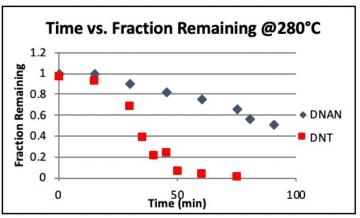
$$2 H_2O_2 (I) \rightarrow 2 H_2O (I) + O_2 (g)$$

Rate of formation of product: Rate = $+\Delta[O_2]/s$

Rate of disappearance of reactant:

Rate = $-\Delta[H_2O_2]/s$ (Use of negative makes rate positive, sometimes rate is written as negative)

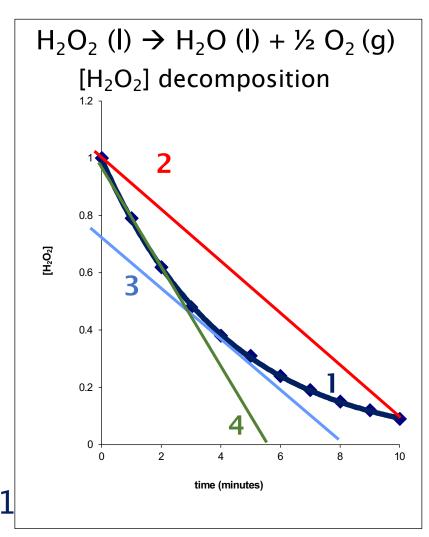

Linearity of Reaction Rates


Reaction rates vary greatly

- Very fast; ex: burning
- Very slow; ex: disintegration of plastic in sunlight

Often not linear

- Rate is often faster at the beginning
- Rate is slowest at the end
- Some reactant often left over
- Especially pronounced for slow reactions



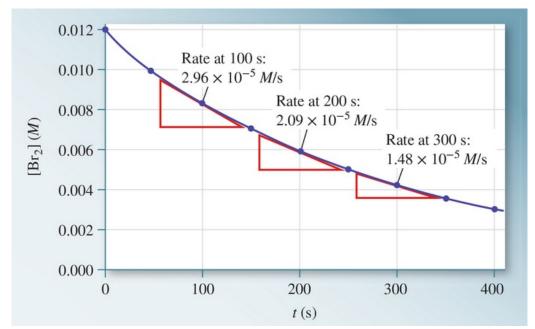
Average Rate of Reaction:

$$Rate = \frac{\boxed{Final \, Concentration - Initial \, Concentration}}{Elapsed \, Time}$$

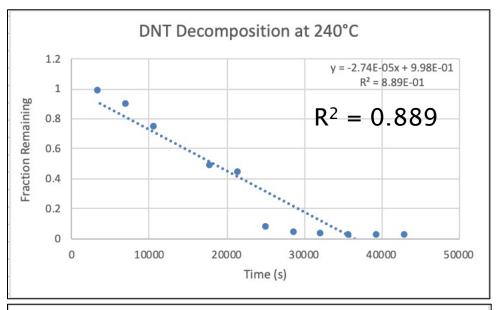
Types of Reaction Rates $Reaction rate = \Delta Concentration/\Delta time = slope$

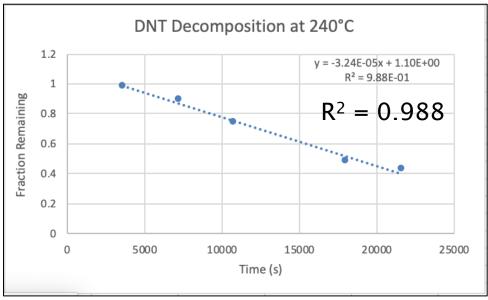
- 1. Plot of original data
 - [Conc.] vs time
 - If curved = rate changes
 - Will reach equilibrium
 - If linear = rate is constant
 - Will run out of reactant
- 2. Average rate of reaction
- 3. Instantaneous rate
 - Tangent to curve 1
 - Can pick any time
- 4. Initial rate
 - t=0 to t=given time
 - Generally portion of curve 1 that is linear

Instantaneous Rate


$$Br_2$$
 (aq) + HCOOH (aq) \rightarrow 2 Br^- (aq) + 2H⁺ (aq) + CO₂ (g)

Brown color of Br₂ disappears as reaction progresses


To Find Instantaneous Rate:


- Select time
- Draw line tangent to curve at that time
- Find slope of the tangent line
- Units of [conc.]/time

Initial Rate

Portion of original data where curve is linear

Stoichiometry & Reaction Rate

When writing rates based on different reactants or products, think about what is happening

$$Br_2$$
 (aq) + HCOOH (aq) \rightarrow 2 Br^- (aq) + 2H⁺ (aq) + CO₂ (g)

Rate at which Br₂ disappears: X M/s

In terms of Br₂:

What is the rate of formation of Br⁻? 2X M/s What is the rate of disappearance of HCOOH? X M/s

Rate at which Br forms: Z M/s

In terms of Br :

What is the rate of disappearance of Br_2 ? $\frac{1}{2}$ Z M/s What is the rate of formation of CO_2 ? $\frac{1}{2}$ Z M/s

This method works for zero order & instantaneous rates, not for more complex rates.

Stoichiometry & Reaction Rate

1. The rate of decomposition of N_2O_5 at a particular instant in a reaction vessel is 4.2×10^{-7} M/s. What is the rate of appearance of (a) NO_2 and (b) O_2 ?

$$2 N_2 O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

- (a) 8.4×10^{-7} M/s
- (b) $2.1 \times 10^{-7} \text{ M/s}$

2. Consider the reaction:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

Suppose that at a particular moment during the reaction hydrogen is reacting at the rate of 0.074M/s. (a) At what rate is ammonia being formed? (b) At what rate is nitrogen reacting?

- (a) 0.049 M/s
- (b) -0.025 M/s

Factors Affecting Reaction Rates Increasing # collisions increases rate

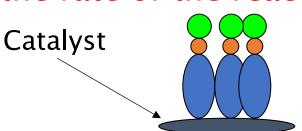
Reaction:

1. Increase concentration of reactant

More particles in same volume = greater chance of collision

2. Increase temperature

Particles move faster - more likely to collide with enough E_A


3. Add a catalyst

Catalyst: chemical that does not change the amount of overall product or reactants, only the rate of the reaction

- fix molecular orientation
- alter transition state; lower E_a
- increase desired surface area

4. Improve Mixing

More interactions = greater chance of effective collision

Rate Laws:

Show Impact of Reactant Concentration on Rate

Rate Law Format: For the reaction $A + B + C \dots \rightarrow Products$

Rate Law: Rate = $k[A]^m[B]^n[C]^p$...

Based on <u>initial</u> concentrations and rate

Variables required in Rate Law:

k = rate constant

m = order of reaction in reactant A

n = order of reaction in reactant B

p = order of reaction in reactant C

other letters as needed for additional reactants

Overall Order of Reaction = sum of the orders of reaction for each reactant

Overall Order = m + n + p

Rate Laws account for non-linearity of reactions

Rate Laws con't

Properties of Rate Laws:

- Orders do not need to be positive integers
 - Ex: if concentration does not impact rate, order is zero
- Orders must be found <u>experimentally</u>
- Catalyst concentrations are included
- Rate Laws hold only for a specific temperature
- Rate Laws do NOT come from the balanced equation!

Example: $P(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$ Not squared! $P(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$ Rate = $P(g) + 2NO(g) + 2H_2O(g)$

Rate Constant, k

- Depends on reaction, temperature, and catalyst
- Also found experimentally

Determining Rate Laws: Isolation Method

Conduct a series of experiments

- Change the concentration of just one reactant each time
- Measure the impact on the rate from each reactant
- Use the ratios of the rates to determine m, n, etc.
- · Rearrange the Rate Law & plug in values to solve for k.

Example: For the reaction $A + B \rightarrow Products Rate = k[A]^m[B]^n$

Conduct 3 experiments: 1. Use [A] & [B], measure Rate 1

2. Use [A]₂ & [B], measure Rate 2

3. Use [A] & $[B]_2$, measure Rate 3

To determine m, divide Rate $1 = k[A]^m[B]^n = [A]^m$

Rate 2 $k[A]_2^m[B]^n [A]_2^m$

To determine n, divide Rate $1 = \frac{k[A]^m[B]^n}{Rate 3} = \frac{k[A]^m[B]^n}{k[A]^m[B]^n} = \frac{[B]^n}{Rate 3}$

To determine k, solve k = Rate

When reporting Rate Laws, use the numbers for k, m, & n

Determining Rate Laws: Isolation Method

A set of experiments was run to study the rate of the reaction:

 BrO_3^- (aq) + $5Br^-$ (aq) + $6H^+$ (aq) $\rightarrow 3Br_2$ (aq) + $3H_2O$ (l) The following data was obtained:

Expt #	[BrO ₃ ⁻]	[Br¯]	[H+]	Rate (M/s)
1	0.10	0.10	0.10	-1.2 x 10 ⁻³
2	0.20	0.10	0.10	-2.4 x 10 ⁻³
3	0.20	0.30	0.10	-7.4 x 10 ⁻³
4	0.20	0.10	0.15	-5.4×10^{-3}

Rate =
$$k[BrO_3^-]^m[Br^-]^n[H^+]^p$$

Determining Rate Laws: Order of Reactants

Rate=
$$k[BrO_3^-]^m[Br^-]^n[H^+]^p$$

Expt #	[BrO ₃ -]	[Br ⁻]	[H+]	Rate (M/s)
1	0.10	0.10	0.10	-1.2 x 10 ⁻³
2	0.20	0.10	0.10	-2.4 x 10 ⁻³
3	0.20	0.30	0.10	-7.4 x 10 ⁻³
4	0.20	0.10	0.15	-5.4 x 10 ⁻³

Order of reaction in BrO₃⁻ (m):

Order of reaction in Br (n):

Order of reaction in H⁺ (p):

Determining Rate Laws: k & Rate Law

Expt #	[BrO ₃ -]	[Br-]	[H+]	Rate (M/s)	
1	0.10	0.10	0.10	-1.2 x 10 ⁻³	
2	0.20	0.10	0.10	-2.4 x 10 ⁻³	
3	0.20	0.30	0.10	-7.4 x 10 ⁻³	
4	0.20	0.10	0.15	-5.4 x 10 ⁻³	

Rate=
$$k[BrO_3^-]^m[Br^-]^n[H^+]^p$$

 $m = 1$
 $n = 1$

k: Solve using data from each experiment (4X!) & average

$$k = Rate [BrO3-]1[Br-]1[H+]2$$

Rate Laws can be used to determine the initial speed of a reaction with given concentrations of reactants.

For the reaction:

$$BrO_{3}^{-}$$
 (aq) + $5Br^{-}$ (aq) + $6H^{+}$ (aq) $\rightarrow 3Br_{2}$ (aq) + $3H_{2}O$ (I)

we determined that the Rate Law was:

Rate =
$$-12M^{-3}s^{-1}[BrO_3^{-1}][Br^{-1}][H^{+1}]^2$$

If we start with the following concentrations:

$$[BrO_3^-] = 0.4M$$

 $[Br^-] = 0.8M$
 $[H^+] = 0.2M$

How fast will the initial reaction proceed?

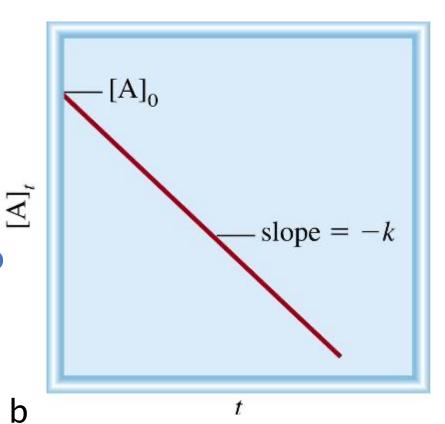
Rate =
$$-12M^{-3}s^{-1} \times [0.4M] \times [0.8M] \times [0.2M]^2$$

= $0.15 M^{-3}s^{-1} M^4$
= $0.15 Ms^{-1}$

Types of Reactions Based on Rate: Zero Order

Change in concentration over time IS linear

Rate Law for $A \rightarrow Product$: rate = k [A]⁰ = k


Units of k: k = rate = M/s

Linear Rate Equation:

$$[A] = -kt + [A]_0$$

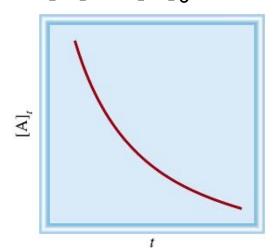
Eventually [A] will go to zero (all reactant will be used up)

Note that this equation is in the form y = mx + b, where b is the y-intercept (i.e. the initial concentration of A).

Types of Reactions Based on Rate: First Order

Change in concentration over time is NOT linear

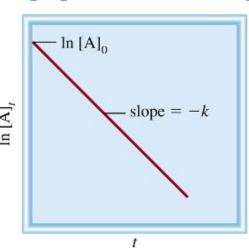
Change in the natural log (In) of concentration over time IS linear.


Rate Law for A
$$\rightarrow$$
 Product: rate = $-\frac{\Delta[A]}{\Delta t} = k[A]$

Units of k: $k = rate/[A] = (M/s)/M = 1/s = s^{-1}$

[A] vs. time is Nonlinear

In [A] vs time is Linear:


$$[A] = [A]_0 e^{(-kt)}$$

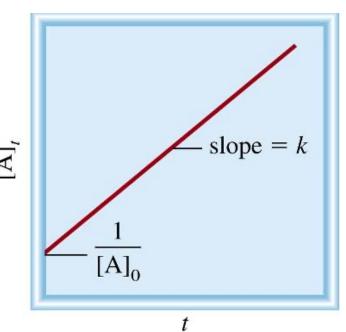
$$\ln\left(\frac{[A]}{[A]_0}\right) = -kt$$

$$[A]_t = [A]$$
 at time t
 $[A]_0 = [A]$ at $t = 0$

$$In[A] = -kt + In[A]_0$$

Types of Reactions Based on Rate: Second Order

Change in concentration over time is NOT linear


Change in the inverse of concentration (1/[A]) over time IS linear.

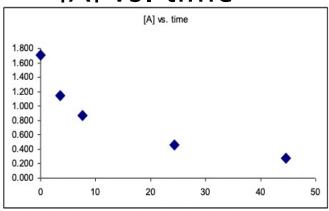
Rate Law for A
$$\rightarrow$$
 Product: rate = $-\frac{\Delta[A]}{\Delta t} = k[A]^2$

Units of k: $k = rate/[A]^2 = (M/s)/M^2 = 1/Ms = M^{-1}s^{-1}$

The linear equation is:

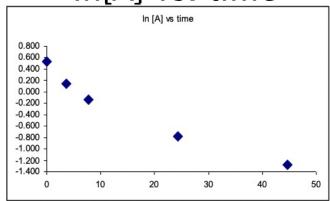
$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$

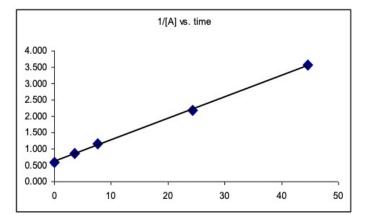
Predicting Reaction Order Graphically


For the reaction A \rightarrow Products:

- 1. Calculate In[A] and 1/[A]
- 2. Make 3 graphs: [A], In[A], and 1/[A] vs. time
- 3. The graph with the best straight line is the reaction order

	Zero	First	Second
time, s	[A] M	In [A]	1/[A]
0	1.710	0.536	0.585
4	1.150	0.140	0.870
8	0.870	-0.139	1.149
24	0.460	-0.777	2.174
45	0.280	-1.273	3.571

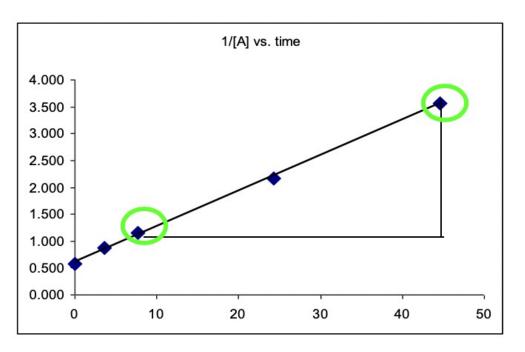

Predicting Reaction Order Graphically


 $[A] = -kt + [A]_0$ Not linear, so not Zero Order Not linear, so not First Order

In[A] vs. time

 $ln[A] = -kt + ln[A]_0$

1/[A] vs. time


 $1/[A] = kt + 1/[A]_0$ Linear, so reaction is Second Order

Using a Graph to Find Rate Constant, k

Equation of the line is:
$$y = mx + b$$

$$1/[A] = kt + 1/[A]_0$$

$$k = m = slope!$$

$$k = m = (y - y_1)/(x - x_1)$$

$$= (3.57 - 1.15)/(45 - 8)$$

$$= 0.066 \text{ M}^{-1}\text{s}^{-1}$$

$$\frac{1}{[A]} = 0.066t + \frac{1}{[A]_0}$$

Using Line Equations to Find Information

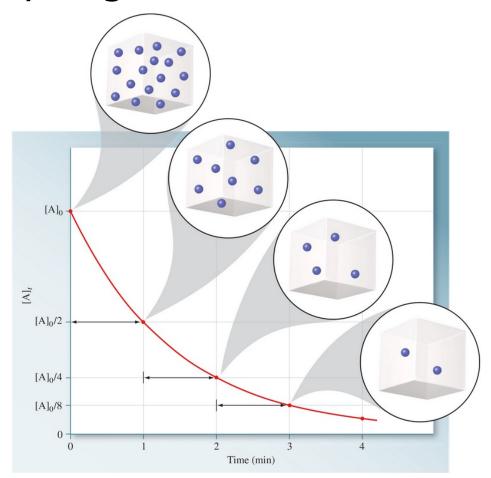
```
1. For the first order reaction: 2 N_2O_5 \rightarrow 2 N_2O_4 + O_2 at 45^{\circ}C, k = 6.22 \times 10^{-4} \text{ s}^{-1}. If [N_2O_5] = 0.100\text{M}: a.) How long does it take for the concentration to drop to 0.010\text{M}?
```

b.) What is the concentration after one hour?

A: 0.0107M

- 2. The decomposition of sulfuryl chloride (SO_2CI_2) is first order in SO_2CI_2 . The rate constant for the decomposition at 660K is 4.5×10^{-2} s⁻¹.
- a.) If we begin with an initial SO_2Cl_2 pressure of 450 torr, what is the pressure of this substance after 60.s? A: 30. torr

b.) At what time will the pressure of SO_2Cl_2 decline to 1/10 its initial value?


3. Compound A reacts according to second order kinetics with a rate constant of $2.86 \times 10^{-2} \text{s}^{-1} \text{M}^{-1}$ at 20°C . If the concentration of A was 1.36M after 15.0s, what was the initial concentration?

Half-Life $(t_{1/2})$

The time required for $[A]_0$ to decrease by 50%

- NOT the time for half of the reaction to occur
- Provides another way to get the rate constant

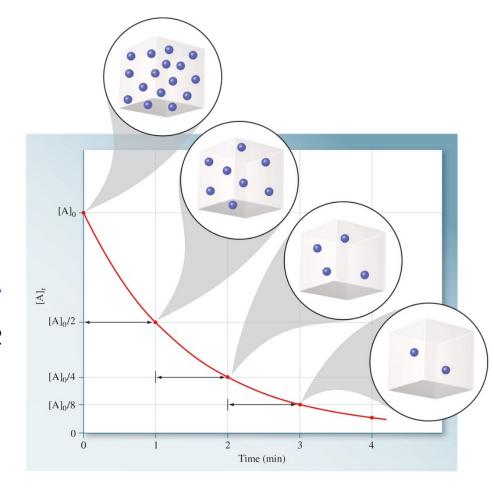
- Symbol is t_{1/2}
- t_{1/2} depends on reaction order
- Can solve for $t_{1/2}$ by plugging $[A]_0 = 1A$ and $[A] = \frac{1}{2}A$ into rate equation

Half-Life of a First Order Reaction

Linear Equation:

$$ln[A] = - kt + ln[A]_0$$

Rearranged Equation:

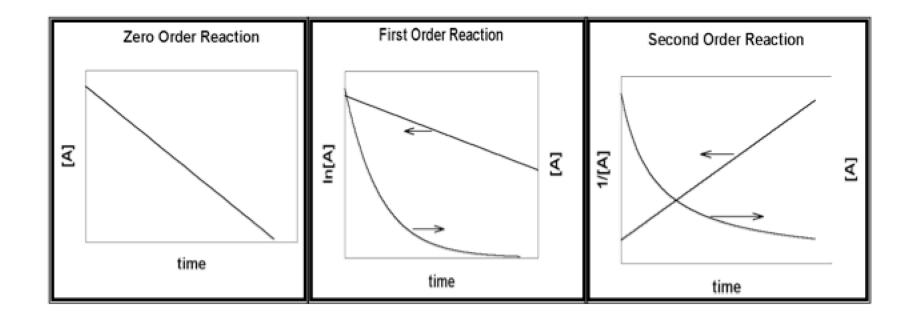

$$\ln \frac{[A]}{[A]_0} = -kt$$

Plug in: $[A]_0 = 1A\& [A] = \frac{1}{2}A$

$$ln(\frac{1}{2}A/A) = ln(\frac{1}{2}) = -kt_{\frac{1}{2}}$$

Solve for $t_{1/2}$:

$$t_{1/2} = \ln 2/k = 0.693/k$$


For a First Order Reaction:

 $t_{1/2}$ is independent of initial reactant concentration

If you know $t_{1/2}$, you know the rate constant

Summary of Kinetic Data

Order	Rate Law	Integrated Rate Law	Linear Plot	k	Half-life
0	Rate = k	$[A]_t = -\underline{kt} + [A]_0$	[A] vs. t	-slope	[A] ₀ /2k
1	Rate = k[A]	$ln[A]_t = -\underline{kt} + ln[A]_0$	ln[A] vs. t	-slope	0.693/k
2	Rate = $k[A]^2$	$1/[A]_t = kt + 1/[A]_0$	1/[A] vs. t	+slope	1/k[A] ₀

Half-life Examples

1. For a 1st order reaction, determine the time it will take for only 1/8 of a material to be left if $t_{1/2} = 3.47 \times 10^{2} \text{s}$

A: $1.04 \times 10^3 \text{ s}$

2. The reaction below is first order in $[H_2O_2]$:

 $2H_2O_2(I) \rightarrow 2 H_2O(I) + O_2(g)$

A solution originally at 0.600M is found to be 0.075M after 54min. Determine the half-life.

A: 18 min

3. The thermal decomposition of phosphine (PH₃) into phosphorus and molecular hydrogen is a first order reaction:

$$4PH_3(g) \rightarrow P_4(g) + 6 H_2(g)$$

The half-life of the reaction is 35.0s at 680°C. Calculate (a) the first order rate constant for the reaction and (b) the time required for 95% of the phosphine to decompose.

A: (a) 0.0198s⁻¹ (b) 151s

- 4. The rate constant for the second-order reaction $2 \text{ NO}_2(g) \rightarrow 2 \text{ NO}(g) + O_2(g)$ is $0.54 \text{ M}^{-1}\text{s}^{-1}$ at 300°C .
- (a) How long, in seconds, would it take for the concentration of NO_2 to decrease from 0.62M to 0.28M?

(b) Calculate the half-lives at these two concentrations.

A: 3.0s, 6.6s

A: 3.6s

Effect of Temperature on Reaction Rate: Arrhenius Equation

Arrhenius Equation – Shows how temp. affects the rate constant (k)

$$k = Ae^{-E_a/RT}$$
 or $ln k = (-E_a/RT) + ln A$

k = rate constant

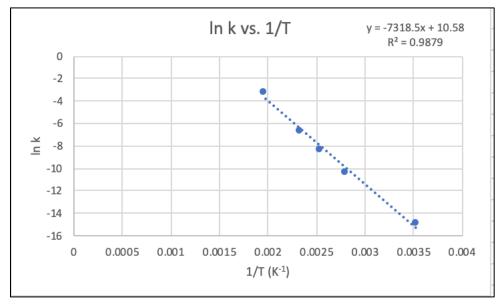
A = frequency factor (based on collision frequency & the probability of correct orientation; constant for a given system)

 E_a = activation energy

R = gas constant in energy units (8.314 J mol⁻¹ K⁻¹)

T = temperature in Kelvin

Graphing In k vs. 1/T gives a straight line with slope = $-E_a/R$


Provides a method to determine E_a for a reaction

Arrhenius Equation Example

Reaction: 2 HI(g) \rightarrow H₂(g) + I₂(g)

Step 1: Find k at several temps. Step 2: Graph In k vs. 1/T

Temp. (K)	k (M ⁻¹ s ⁻¹)
283	3.52x10 ⁻⁷
356	3.02x10 ⁻⁵
393	2.19x10 ⁻⁴
427	1.16x10 ⁻³
508	3.95x10 ⁻²

Step 3: Calculate slope (= $-E_a/R$) Step 4: Multiply slope by -R to get E_a

2 -Point Arrhenius Equation Example

Use rate constants at just 2 temps to solve for E_a

- This method is less accurate but only requires 2 k values
- Best to use only if there is limited data

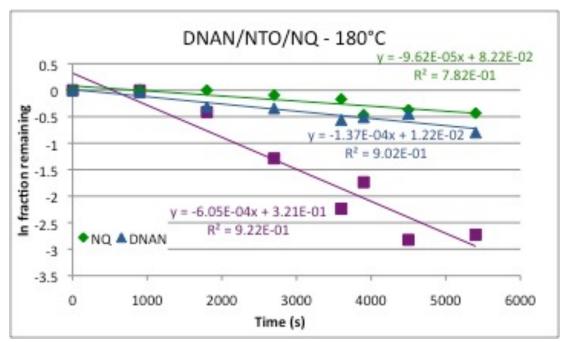
• Equation:
$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$
 Note: $\ln(k_1/k_2) = \ln k_1 - \ln k_2$

Find E_a for the reaction: $2HI(g) \rightarrow H_2(g) + I_2(g)$

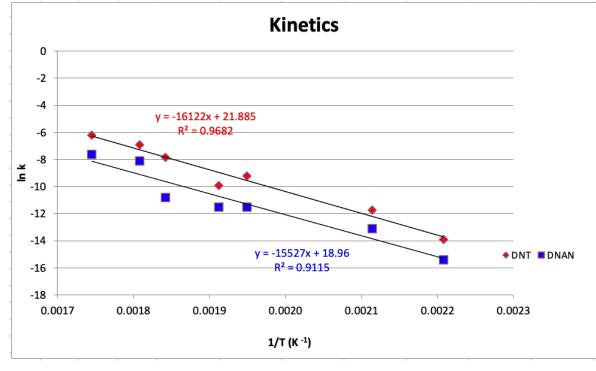
Data:

$$k_1 = 0.0395 \text{ M}^{-1}\text{s}^{-1}$$
 $T_1 = 508 \text{ K}$

$$k_2 = 0.00116 \text{ M}^{-1}\text{s}^{-1}$$
 $T_2 = 427 \text{ K}$


More uses of the Arrhenius Equation

1. The activation energy of a certain reaction is 31.5 kJ/mol. At 30°C, the rate constant is 0.0190 s⁻¹. At what temperature in degrees Celsius would this reaction go twice as fast?


- 2. The gas-phase reaction $Cl(g) + HBr(g) \rightarrow HCl(g) + Br(g)$ has an overall enthalpy change of -66kJ. The activation energy for the reaction is 7 kJ.
- (a) Sketch the energy profile for the reaction, and label E_a and ΔE .

(b) What is the activation energy for the reverse reaction?

A: 73 kJ

Scientists do use these graphical techniques for real research.

Reaction Mechanism: What (we think) actually happens during a reaction

Series of elementary reactions that lead to an overall rxn

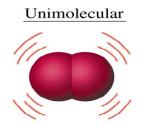
Mechanism info can be used to modify reactions to increase yield, speed, etc.

Ex:
$$2 \text{ NO(g)} + O_2(g) \rightarrow 2 \text{NO}_2(g)$$

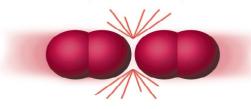
$$2 \text{NO(g)} \longrightarrow N_2 O_2(g)$$

$$N_2 O_2(g) \longrightarrow 2 \text{NO}_2(g)$$

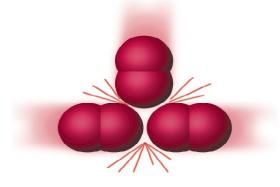
$$N_2 O_2(g) \longrightarrow 2 \text{NO}_2(g)$$


 N_2O_2 is detected during the reaction!

Elementary Step: $NO + NO \rightarrow N_2O_2$


+ Elementary Step: $N_2O_2 + O_2 \rightarrow 2NO_2$

Overall Reaction: $2NO + O_2 \rightarrow 2NO_2$


Some Terminology: Molecularity Number of molecules reacting in an elementary step

Termolecular

Unimolecular - one

- Fastest
- Molecule simply breaks apart
- No molecular alignment needed

Bimolecular - two

- Most common
- May require correct alignment

Termolecular - three

- Usually rate limiting (slow!)
- Low probability that all 3 particles will collide simultaneously (esp. with correct alignment and energy)

Some More Terminology

Intermediates: Species that appear in a reaction mechanism but not in the overall reaction N_2O_2 is an

- Formed in an early elementary step
- Consumed in a later elementary step

Ex:

Elementary Step: $NO + NO \rightarrow N_2O_2$ + Elementary Step: $N_2O_2 + O_2 \rightarrow 2NO_2$ Overall Reaction: $2NO + O_2 \rightarrow 2NO_2$

Rate Determining Step: Slowest step in the sequence of steps leading to the overall reaction

Often determined by molecularity

intermediate

Rate Laws & Intermediate Steps

Unimolecular reaction: $A \rightarrow Products$ rate = k[A]

Bimolecular reaction: $A + B \rightarrow Products rate = k[A][B]$

Bimolecular reaction: $A + A \rightarrow Products rate = k[A]^2$

Writing reaction mechanisms:

- The sum of the elementary reactions <u>must</u> give the overall balanced equation for the reaction.
- The rate-determining step should predict the same rate law that is determined experimentally
- The rate law for each step is found from the coefficients of the reactants. This is ONLY true for ELEMENTARY reactions!

Developing a Reaction Mechanism

Measure the rate of the reaction:

- Run a set of isolation method experiments
 - Run 1 experiment for each reactant + a control
 - Measure [A] vs. time

Formulate the rate law

- Determine the order of each reactant based on data
- Use the results to calculate an average value for k
- Determine the overall rate of the reaction

Suggest a reaction mechanism

- Elementary steps must match stoichiometry of overall rxn
- Use molecularity to determine rate determining step
- Order of rate-determining step must match overall rxn order

Ex: Developing a Reaction Mechanism for $NO_2 + CO \rightarrow NO + CO_2$

Based on the results of a set of isolation method experiments, the overall rate was found to be:

Rate =
$$k[NO_2]^2$$

Suggested reaction mechanism:

- Need to account for rate being 2nd order in NO₂
- Need to account for rate being zero order in CO

Step1:
$$NO_2 + NO_2 \rightarrow NO + NO_3$$
 rate = $k[NO_2]^2$
Step2: $NO_3 + CO \rightarrow NO_2 + CO_2$ rate = $k[NO_3][CO]$
 $NO_2 + CO \rightarrow NO + CO_2$

Step 1 would be the rate-determining step, because the rate matches the overall reaction rate.

You might also be asked to evaluate possible mechanisms.

Evaluating Mechanisms

Ex:
$$H_2 + 2ICl \rightarrow 2HCl + I_2$$
 Rate = $k[H_2][ICl]$

Option #1

Step 1:
$$ICl + ICl \longrightarrow I_2 + Cl_2$$
 (slow)

Step 2:
$$Cl_2 + H_2 \longrightarrow 2HCl$$

Sum:
$$2 IC1 + H_2 \rightarrow 2HC1 + I_2$$

Rate =
$$k[IC1]^2$$

Option #2

Step 1:
$$H_2 + ICl \longrightarrow HI + HCl$$
 (slow)

Step 2:
$$ICl + HCl \longrightarrow HI + Cl_2$$

Sum:
$$2 \text{ ICl} + \text{H}_2 \rightarrow 2 \text{HI} + \text{Cl}_2$$

Rate =
$$k[H_2][IC1]$$

Option #3

Step 1:
$$H_2 \longrightarrow 2H$$
 (slow)

Step 2:
$$ICl + H \longrightarrow HCl + I$$

Step 3:
$$H + I \longrightarrow HI$$

Sum:
$$ICl + H_2 \rightarrow HCl + HI$$

Rate =
$$k[H_2]$$

Option #4

Step 1:
$$H_2 + ICl \longrightarrow HCl + HI \text{ (slow)}$$

Step 2:
$$HI + ICI \longrightarrow HCI + I_2$$

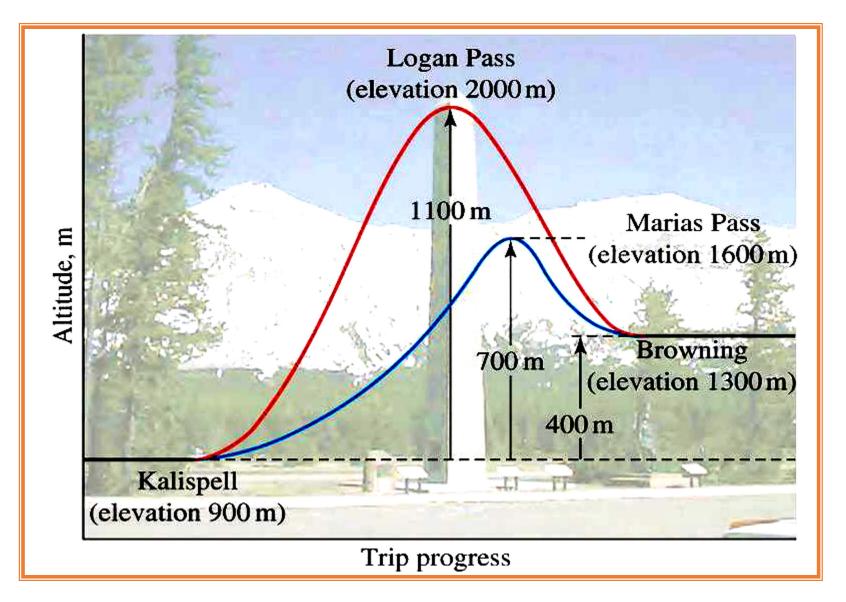
Sum:
$$2 \text{ IC1} + \text{H}_2 \rightarrow 2 \text{HC1} + \text{I}_2$$

Rate =
$$k[H_2][IC1]$$

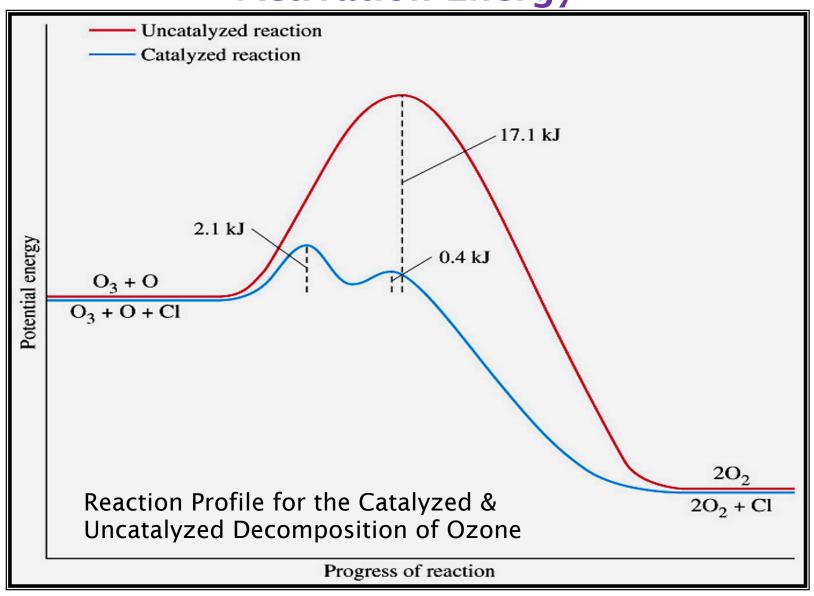
Catalysis

Catalysts alter the rate of a chemical reaction

- Not part of the overall reaction (not a reactant or product)
- Often work by lowering activation energy
 - Since less energy is needed, rate increases
- Materials that slow reaction rates are called inhibitors

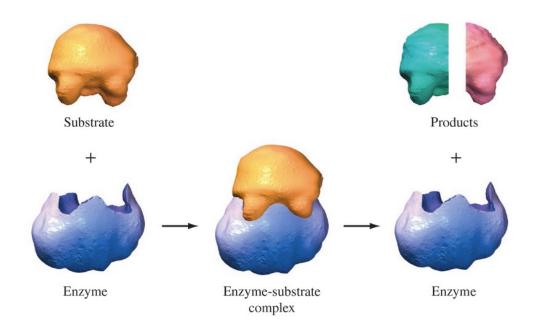

Heterogeneous catalysts

- In a different phase than the reacting medium
- Solids often used to catalyze reactants in solution
- Often used as a surface to align molecules correctly
- Benefit often easy to remove & re-use


Homogeneous catalysts

- In the same phase as the reacting medium
- May have larger impact on rate (may be able to create a lower energy activated complex than heterogeneous)

Effect of a Catalyst on Reaction Profile & Activation Energy


Effect of a Catalyst on Reaction Profile & Activation Energy

Enzymes

Enzymes

- Control the rate of biological reactions
- Very specific
 - Only act on specific molecules called substrates
- Often proteins shape determines functionality
 - Partially due to hydrogen bonding (CHM101!)
- Some enzymes also act as inhibitors

Catalysts & Reaction Mechanisms When considering mechanisms:

- Catalysts control the rate of the reaction.
- The rate of the elementary step that involves the catalyst will control the observed rate.
- Rate constant is different from the rate constant without the catalyst – called the catalytic rate constant.