
Chapter 17

Acids & Bases

$H_2O + H_2O \implies H_3O^+ + OH^-$

1

Some Polyatomic lons that are Important for Acids & Bases

Ammonium	NH_4^+	Nitrate	NO_3^-
Hydronium	H ₃ O+	Nitrite	NO_2^-
Acetate	CH ₃ COO ⁻	Phosphate	PO ₄ ³⁻
Carbonate	CO ₃ ²⁻	Perchlorate	CIO ₄ -
Hydroxide	OH-	Sulfate	SO ₄ ²⁻
Cvanide	CN-		

You should know these ions

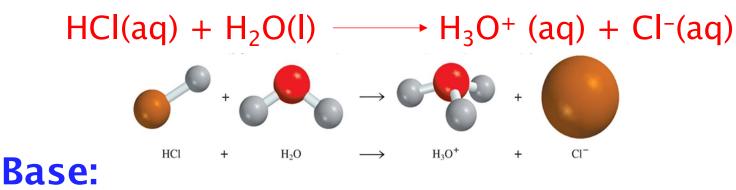
What are Acids & Bases? Arrhenius Definition

Acid:

A substance that, when dissolved in water, increases the concentration of hydrogen (H⁺) ions (aka protons).

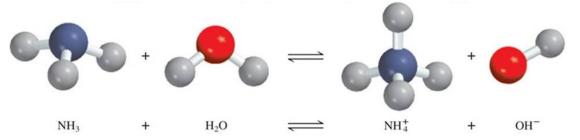
HCI (g) $\xrightarrow{H_2O}$ H⁺ (aq) + Cl⁻ (aq)

Base:


A substance that, when dissolved in water, increases the concentration of hydroxide ions (OH⁻).

NaOH (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + OH⁻ (aq)

What are Acids & Bases? Brønsted-Lowry Definition Acid:


A proton (H⁺) donor

- Must have a removable proton
- Proton goes to a base

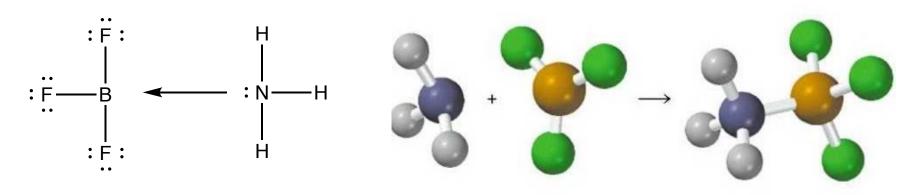
A proton (H⁺) acceptor

Must have a pair of non-bonding electrons
 NH₃(aq) + H₂O(I) ← NH₄+ (aq) + OH⁻ (aq)

Lewis Acids & Bases

Acid:

An electron pair acceptor


- Do not need to have a removable proton
- Must have an empty orbital to put electrons in

Base:

An electron pair donor

Must have a pair of non-bonding electrons

Ex: $BF_3(g) + NH_3(g) \rightarrow F_3B-NH_3(g)$

Strength of Acids & Bases

Strong Acids & Bases: Complete dissociation

- Non H⁺/OH⁻ ions form spectator ions
- Can use basic stoichiometry (CHM 101) in calculations
- No undissociated reactant left in solution

Weak Acids & Bases: Incomplete dissociation

- Equilibrium process
- Equilibrium constants are K_a or K_b
- Titrations involve stoichiometry and equilibrium calcs.

Aqueous Solutions

- Acid or Base reacts with water
 - Water acts as a weak acid or base in the reaction

Factors impacting acid strength Basic concept: easier to lose H, stronger acid

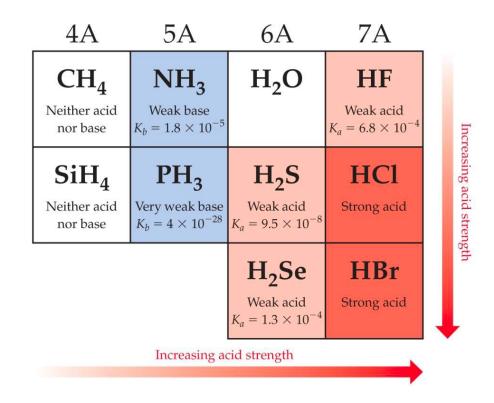
Charge:

- Higher charge = stronger bond to H⁺ = weaker acid
- Ex: $HAsO_4^{2-}$ weaker than $H_2AsO_4^{-}$ weaker than H_3AsO_4

Bond length:

- Shorter bonds are stronger so H⁺ harder to remove
- Ex: HF weaker than HCl weaker than HBr

Electronegativity:


- Less electronegative, share e⁻ more equally, stronger bond
- Ex: P less electronegative than S, H₃PO₄ weaker than H₂SO₄

For Oxoacids

- If all else is equal, fewer double bonds = weaker acid
- Ex: H₂SO₃ weaker than H₂SO₄
- More double bonds = more resonance = more stability with H⁺ removed

Stability of conjugate base: more stable anion = more acidic

Binary Acid Trends in the Periodic Table

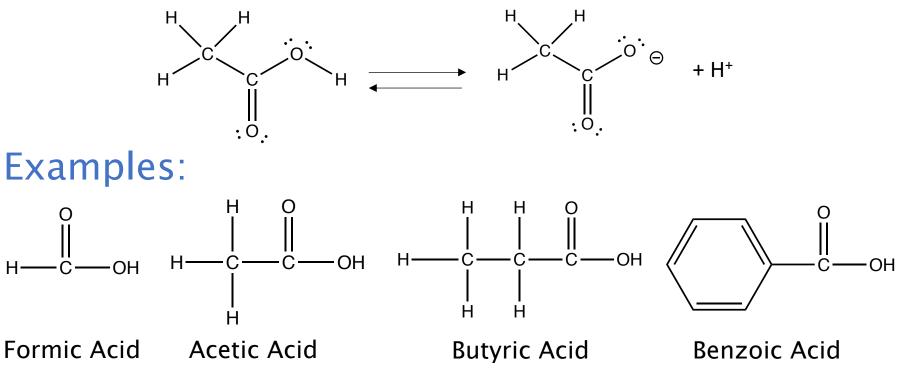
For <u>binary</u> acids:

Acidity increases left to right across a row

- Electrongativity increases left to right
 Acidity increases top to bottom down a group
- Atomic size increases down a group

Common Acids & Bases You Will Need to Know

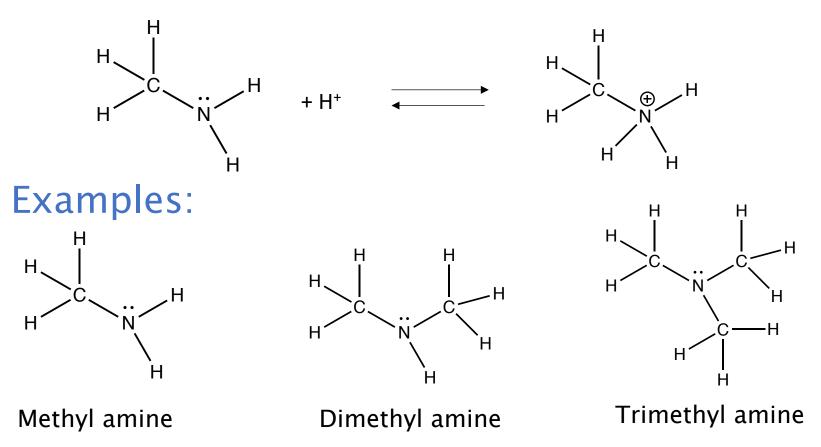
Strong Acids:			Strong Bases	:		
Hydrochloric A	cid	HCI	Soluble Hydro	kides:		
Sulfuric Acid		H_2SO_4	Sodium	NaOH		
Nitric Acid		HNO_3	Potassium	КОН		
Perchloric Acid		$HCIO_4$	Lithium	LiOH		
Hydrobromic A	cid	HBr	Barium	Ba(OH) ₂		
Hydroiodic Aci	b	HI	etc.			
Weak Acids:			Weak Bases:			
Carbonic Acid	H_2C	CO ₃	Ammonia	NH_3		
Phosphoric Acid	H₃F	PO ₄	Amines	$R-NH_2, R_2NH$		
Acetic Acid	CH	₃COOH	Insoluble/slightly			
Hydrofluoric Acid H			soluble hydroxides			
Nitrous Acid		O ₂				
Hydrocyanic acid		N				
Carboxylic Acids	R-0	СООН				


Organic Acids: Carboxylic Acids (-COOH)

Weak organic acids

- -COOH group on molecule is acidic
- Removal of proton (H⁺) creates resonance structure
- Stabilizes anion

Never fully dissociate in water


• Equilibrium process

Organic Bases: Amines (contain N)

Weak organic bases

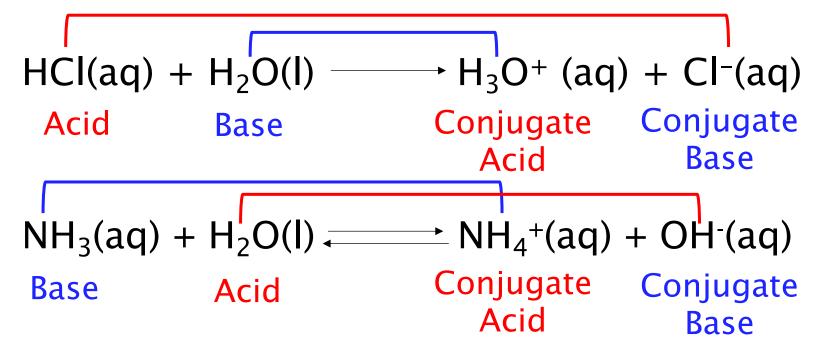
- Derivatives of ammonia
- N has lone pair of electrons to accept a proton Also do not fully dissociate in water
- Equilibrium process

Organic Acids & Bases: Things to keep in mind

Organic Acids & Bases:

Only acidic proton

Acid: CH₃COOH Becomes CH₃COO⁻


Amine: CH₃NH₂ Becomes CH₃NH₃⁺

Carbon: no lone pairs

- Cannot accept extra protons
- Protons bonded to carbon are not acidic

Added proton bonds via lone pair on N

Conjugate Acid-Base Pairs

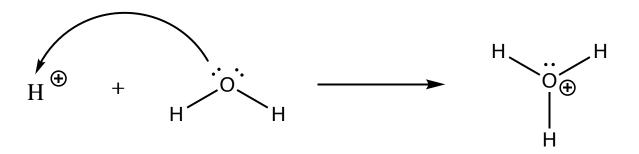
Conjugate Acid: Formed from the **base** after H⁺ is added **Conjugate Base:** Formed from the **acid** after H⁺ is lost

Each acid has a conjugate base, each base has a conjugate acid. For substances that can both gain or lose a proton, whether they act as an acid or base depends on the system.

Conjugate Acid-Base Pair Examples

- 1. Give the conjugate base of each of the following acids:
 - a) HIO₃
 - b) NH₄+
 - c) H_2S
 - d) HPO₄²⁻

e) C₄H₉COOH

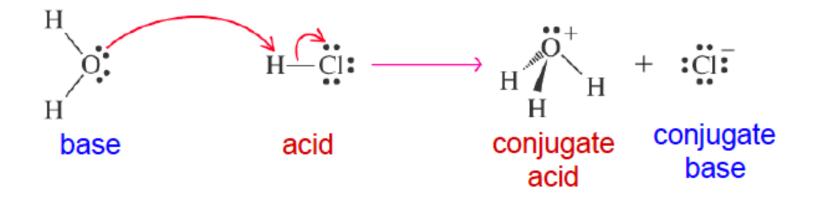

2. Write the formula for the conjugate acid of each of the following bases:

- a) HSO₃-
- b) F-
- c) CO₃²⁻
- d) CH_3NH_2

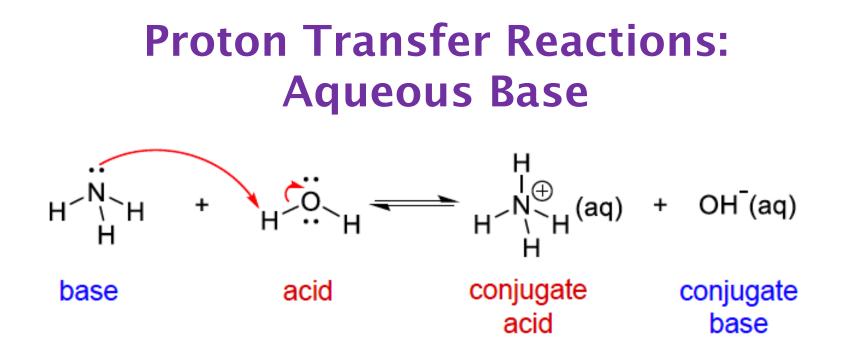
H⁺ Ion in Water

H⁺ is simply a proton – an H atom with no electron

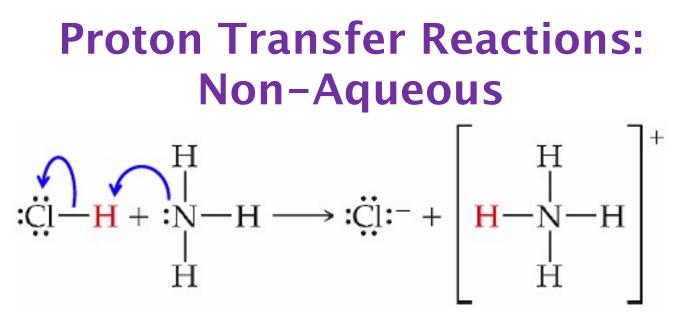
- In water, clusters of hydrated H+ form
- Simplest cluster is the hydronium ion: H₃O⁺



• H⁺ (aq) & H₃O⁺(aq) are used interchangeably

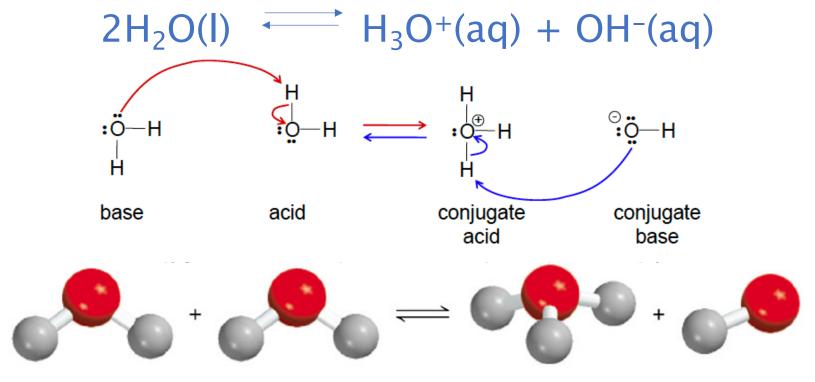

$$HA \xleftarrow{} H^+ + A^-$$

 $HA + H_2O \longrightarrow H_3O^+ + A^-$


Proton Transfer Reactions: Aqueous Acid

- HCI (the acid) donates a proton (H⁺)
- Water (the base) accepts the proton
- The conjugate base of the acid (Cl⁻) and the conjugate acid of the base (H₃O⁺) are formed

- Water (the acid) donates a proton (H⁺)
- Ammonia (the base) accepts the proton
- Water is AMPHIPROTIC it can act as either an acid or a base (donate or accept a proton)


- HCI (the acid) donates a proton (H⁺)
- Ammonia (the base) accepts the proton
- Can occur in the gas phase water not needed
- Advantage of Brønsted-Lowry definition over Arrhenius definition
- Lewis definition even more broad (electron pair donor/acceptor)

18

Acid-Base Properties of Water: Autoionization

Autoionization: In pure water, one water molecule can donate a proton to another water molecule

• Essentially the water ionizes itself ("auto")

This is why pure water can conduct electricity

Autoionization: An Equilibrium Process

Consider the autoionization of water at 25°C

 $H_2O(I) + H_2O(I) \longrightarrow H_3O^+(aq) + OH^-(aq)$ Weak Base Weak Acid Strong Acid Strong Base

$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$

This H_3O^+ & OH^- concentration is where the pH of 7 for pure water comes from

 $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ (ion-product constant)

 K_w is very small = favors reactants (H_2O)

 $K_{\rm w}$ applies to both pure water and aqueous solutions

- If know acid concentration, can use K_w to find the base concentration & vice versa

рН & рОН

Method of Measuring Acidity

• <u>Power of the Hydrogen lon</u>

Formulas:

- $pH = -log[H_3O^+]$
- $[H_3O^+] = 10^{(-pH)}$
- $pOH = -log[OH^-]$
- $[OH^{-}] = 10^{(-pOH)}$
- $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} M$
- $pK_w = pH + pOH = 14$

Neutral: $[H_3O^+] = [OH^-] pH = 7$ Acidic: $[H_3O^+] > [OH^-] pH < 7$ Basic: $[H_3O^+] < [OH^-] pH > 7$

Sample	pH Value
Gastric juice in the stomach	1.0-2.0
Lemon juice	2.4
Vinegar	3.0
Grapefruit juice	3.2
Orange juice	3.5
Urine	4.8-7.5
Water exposed to air*	5.5
Saliva	6.4-6.9
Milk	6.5
Pure water	7.0
Blood	7.35-7.45
Tears	7.4
Milk of magnesia	10.6
Household ammonia	11.5

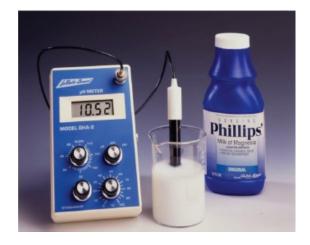
Sig Figs: # sig figs in concentration = # sig figs after decimal point in pH/pOH_{21}

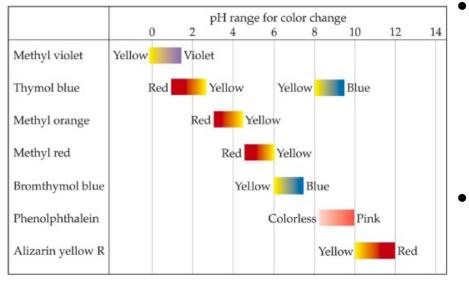
What is log?

Consider the number 1.0 x 10⁻³

- Log refers to base 10
- Essentially, log refers to the exponent in a number written in scientific notation
- It tells you the magnitude (size) of the number
- The log of 1.0×10^{-3} is -3
- The formula for pH is -log to eliminate the negative sign in the answer

Consider the number 2.8 x 10⁻³


- Log still refers primarily to the exponent, but the actual value is impacted by the rest of the number
- The log of 2.8 x 10^{-3} will be close to, but not exactly, -3
- $Log(2.8 \times 10^{-3}) = -2.6$


Low pH values are acidic because concentrations generally have negative exponents. 1×10^{-3} M > 1×10^{-10} M

Measuring pH

Most Accurate: pH meter

 Measures the voltage in a solution to determine concentration & pH

Other methods:

- Litmus paper
 - Red litmus paper turns blue above ~ pH 8
 - Blue litmus paper turns red below ~ pH 5
- Indicators
 - In solution or on pHydrion paper

Concentrated vs. Dilute Solutions

Do we need to take the autoionization of water into account when determining pH?

- Example 1: Concentrated Solutions Consider an aqueous 0.010M solution of nitric acid.
- Two reactions are occurring:
- HNO₃(aq) + H₂O(I) → H₃O⁺(aq) + NO₃⁻(aq) [H₃O⁺]=0.010M 2H₂O(I) \implies H₃O⁺(aq) + OH⁻(aq) [H₃O⁺] = 1.0×10⁻⁷M

The [H₃O⁺] from ionization of water is negligible: 0.010M + 0.0000001M = 0.0100001M<u>It can be ignored</u>

Concentrated vs. Dilute Solutions

Example 2: Dilute Solutions

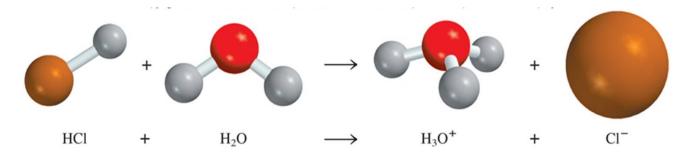
- Consider an aqueous 1.0×10^{-6} M solution of nitric acid.
- Two reactions are again occurring:
- $HNO_{3}(aq) + H_{2}O(I) \rightarrow H_{3}O^{+}(aq) + NO_{3}^{-}(aq) [H_{3}O^{+}] = 1.0 \times 10^{-6} M$
- $2H_2O(I) \longrightarrow H_3O^+(aq) + OH^-(aq)$ $[H_3O^+] = 1.0 \times 10^{-7} M^*$
- *Likely somewhat less due to Le Châtelier's Principle
- The [H₃O⁺] from ionization of water is 10% of the amount contributed by the acid: 1.0x10⁻⁶M + 0.1x10⁻⁶M = 1.1x10⁻⁶M It CANNOT be ignored

Contribution from autoionization of water must be taken into account if acid/base provides $< 10^{-6}M H_3O^+/OH^-$

pH Calculations for Strong Acids/Bases

1. Calculate [H⁺] at 25°C for an aqueous solution in which $[OH^-] = 0.00045M$. Indicate whether it is acidic, basic, or neutral. A: 2.2×10^{-11} M; basic

2. Find the pH and pOH of a 0.0050M HBr solution at 25°C $$_{\rm pH:\ 2.30;\ pOH:\ 11.70}$

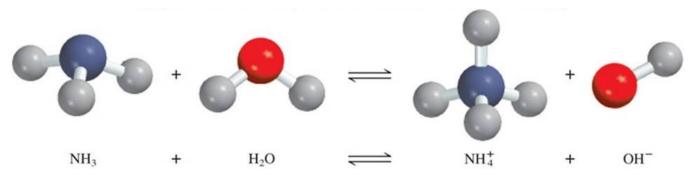

3. Calculate the H₃O⁺ and OH⁻ concentrations at 25°C of an aqueous 0.010M solution of nitric acid. [H₃O⁺]: 0.010M [OH⁻]: 1.0×10⁻¹² 4. Calculate the pH made from 15.00mL of 1.00M HCl diluted to 0.500L. A:1.523

5. What is the concentration of a solution of Ba(OH)₂ for which the pH is 10.05? A: 5.6x10⁻⁵M

Strength of Acids & Bases

Strong Acids & Bases: Complete dissociation

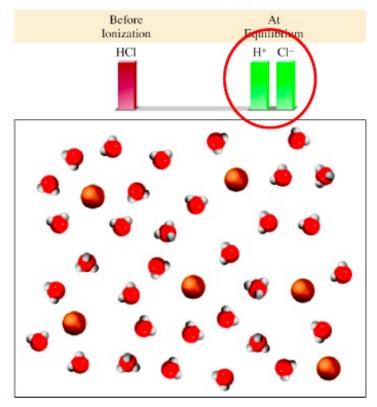
- Strong electrolytes
- Good conductors of electricity
- Completely ionized in aqueous solution; no original compound remains
- Conjugate has no measurable strength
- Single arrow not equilibrium

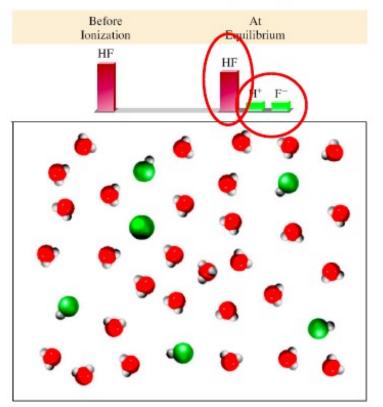

 $HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq)$

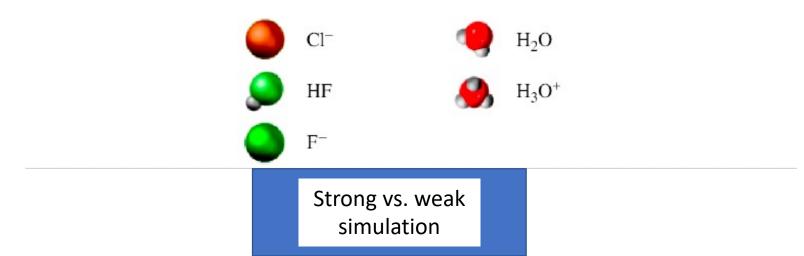
 $NaOH(aq) \rightarrow Na^+(aq) + OH^-(aq)$

Strength of Acids & Bases

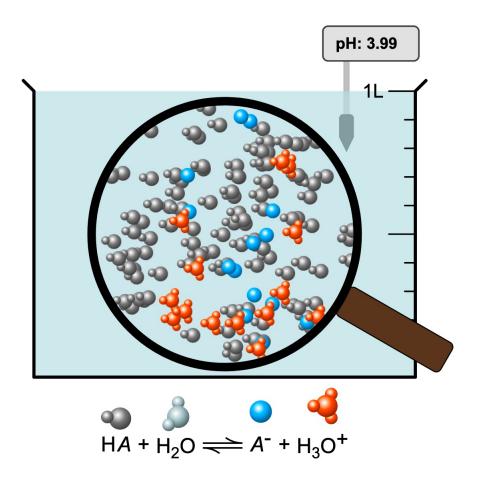
Weak Acids & Bases: Incomplete dissociation


- Some of original compound remains along with ions
- Equilibrium process; represented by double arrow
- Dissociation is governed by an equilibrium constant
 - K_a or K_b
- Poor conductors of electricity
- Conjugates can act as acids/bases


 $CH_3COOH(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CH_3COO^-(aq)$


 $CH_3NH_2(aq) + H_2O(I) \longrightarrow CH_3NH_3^+(aq) + OH^-(aq)_{29}$

Strong Acid (HCI)



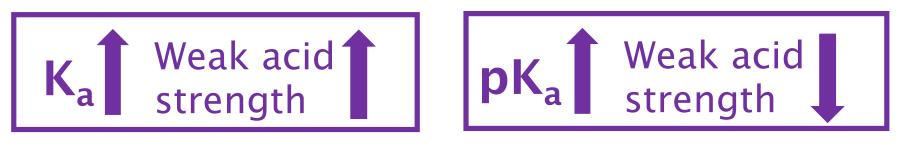
Weak Acid (HF)

2 Factors affect pH of solution: nature of acid/base concentration

Relative Strengths of Conjugate Acid-Base Pairs

Strong Acids/Bases give weak conjugates and vice versa

Table 16.2 Relative Strengths of Conjugate Acid-Base Pairs					
		Acid	Conjugate Base		
Acid strength increases	Weak acids Strong acids	Acid (HClO ₄ (perchloric acid) HI (hydroiodic acid) HBr (hydrobromic acid) HCl (hydrochloric acid) H $_2$ SO ₄ (sulfuric acid) HNO ₃ (nitric acid) H $_3$ O ⁺ (hydronium ion) (HSO ₄ ⁻ (hydrogen sulfate ion) HF (hydrofluoric acid) HNO ₂ (nitrous acid) HCOOH (formic acid) CH ₃ COOH (acetic acid) NH ⁺ ₄ (ammonium ion) HCN (hydrocyanic acid) H ₂ O (water)	Conjugate Base ClO_4^- (perchlorate ion) I^- (iodide ion) Br^- (bromide ion) Br^- (bromide ion) Cl^- (chloride ion) HSO_4^- (hydrogen sulfate ion) NO_3^- (nitrate ion) H_2O (water) $SO_4^{2^-}$ (sulfate ion) F^- (fluoride ion) NO_2^- (nitrite ion) NO_2^- (nitrite ion) $HCOO^-$ (formate ion) CH_3COO^- (acetate ion) NH_3 (ammonia) CN^- (cyanide ion) OH^- (hydroxide ion)		
		NH ₃ (ammonia)	NH_2^- (amide ion)		


Stronger acids will dominate over weaker acids HNO₂(aq) + CN⁻(aq) \implies HCN(aq) + NO₂(aq) K>1₃₂ Acid Ionization Constant: K_a Equilibrium constant for acid dissociation Dissociation of acid in water:

$$HA(aq) + H_2O(I) \xleftarrow{} H_3O^+(aq) + A^-(aq)$$
$$K_{eq} = \frac{[H_3O^+][A^-]}{[HA]} = K_a$$

K_a is the acid ionization (aka acid dissociation) constant

- Quantitative measure of acid strength
- Higher K_a = stronger acid
- Sometimes discussed in terms of pK_a

$$bK_a = -\log K_a$$

K_a Values for Some Common Weak Acids

Name of Acid	Formula	Structure	Ka	Name of Acid	Formula	Structure	K _{a1}	K _{a2}	K _{a3}
Chloroacetic acid	CH ₂ ClCOOH	О СH ₂ Cl—С—О—Н	1.4×10^{-3}	Sulfuric acid *	H ₂ SO ₄	0 Н−О-Ѕ-О-Н 0	Very large	1.3×10^{-2}	
Hydrofluoric acid	HF	H—F	6.1×10^{-4}	Oxalic acid	$H_2C_2O_4\\$	0 0 ∥ ∥ Н−О−С−С−О−Н	5.0×10^{-2}	1.6×10^{-5}	
Nitrous acid	HNO ₂	О=N-О-Н	5.6×10^{-4}						
Formic acid	НСООН	О Н−С−О−Н	1.8×10^{-4}	Sulfurous acid	H_2SO_3	0 ∥ H−O−S−O−H	1.3×10^{-2}	6.3×10^{-8}	
Benzoic acid	C ₆ H ₅ COOH	о —С—О—Н	6.3×10^{-5}	Ascorbic acid (vitamin C)	$\mathrm{H}_{2}\mathrm{C}_{6}\mathrm{H}_{6}\mathrm{O}_{6}$	H-O H C C C C C C C C C C C C C C C C C C	9.1×10^{-5}	1.6×10^{-12}	
Acetic acid	CH ₃ COOH	СН ₃ СООН СН ₃ —С—О—Н	1.8×10^{-5}			С́H ₂ OH			
Hydrocyanic acid	HCN	$H - C \equiv N$	6.2×10^{-10}	Carbonic acid	H ₂ CO ₃	0 Н−О−С−О−Н ■	4.0×10^{-7}	5.0×10^{-11}	
			1.0×10^{-10}	Hydrosulfuric acid*	H_2S	H—S—H	7.9×10^{-8}	1×10^{-19}	
Phenol	C ₆ H ₅ OH	О—Н				0 Н-О-Р-О-Н			10
Acetylsalicylic acid	C ₉ H ₈ O ₄	Q	3.0×10^{-4}	Phosphoric acid	H_3PO_4	o I	6.3×10^{-3} 6	6.3×10^{-8} 5	5.0×10^{-13}
(aspirin)			* Only the	secon	d proton in	H₂SO	4 is we	ak 34	

Calculations Using K_a

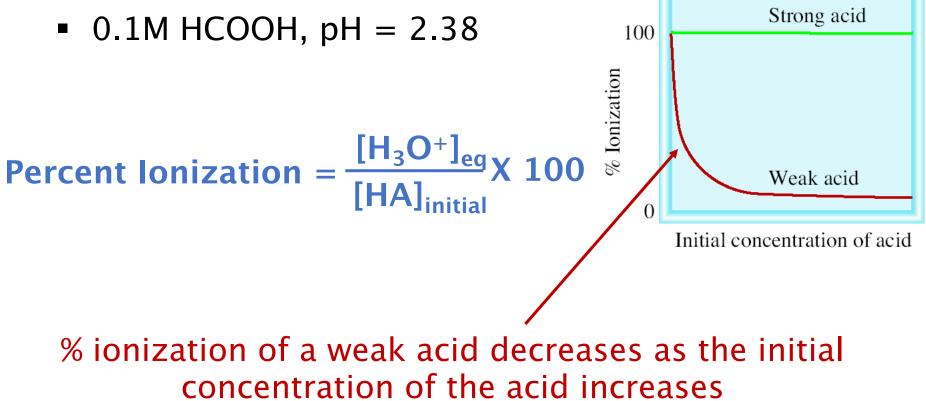
1.) 0.100mol of HF is dissolved in 1.00L of water at 25°C. The pH at equilibrium was found to be 2.08. Calculate K_a and pKa.

Note: Do not use approximation method if you have the value of X!

A: $K_a = 7.5 \times 10^{-4}$ pK_a = 3.12 2.) What is the pH of a weak 0.122M monoprotic acid whose K_a is 5.7x10⁻⁶?

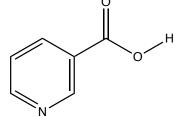
3.) Find the pH of a 0.20M solution of Formic Acid (HCHO₂)

Look up K_a in table: 1.8×10^{-4}


Determining Relative Acidity

1.) Which is the stronger acid, HF or HNO₂?

Look up K_a in table: HF: 6.1×10^{-4} HNO₂: 5.6×10^{-4}


Percent Ionization and K_a

- Indicates the extent to which an acid is ionized
- Only matters for weak acids (100% for strong)
- Higher percent ionization = more ions = stronger acid
 - Ex: 0.1M HCl, pH = 1.00

Calculations Involving Percent Ionization

1.) Niacin, one of the B vitamins, has the following structure: $\hat{\parallel}$

a.) If a 0.020M solution has a pH of 3.26, what is the K_a for niacin? A:1.6x10⁻⁵

b.) What is the percent ionization of the 0.020M solution?

2.) A 0.0100M solution of HNO_2 is 19% ionized at equilibrium. What is the K_a ?

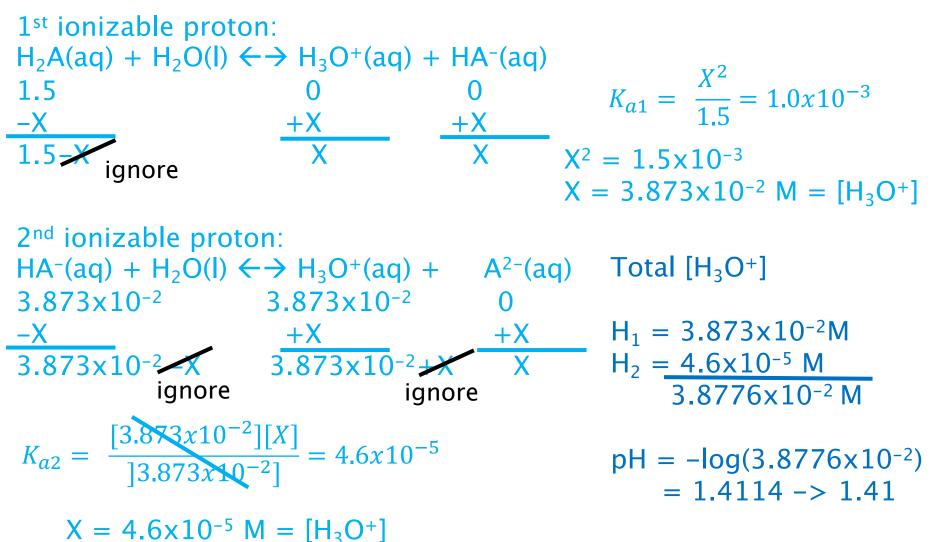
A:4.46x10⁻⁴ 41

Polyprotic Acids

Acids that have more than one ionizable proton

- Ionize in successive steps $H_2CO_3(aq) + H_2O(I) \implies H_3O^+(aq) + HCO_3^-(aq)$ $HCO_3^-(aq) + H_2O(I) \implies H_3O^+(aq) + CO_3^{2-}(aq)$
- Each step has its own K_a
- Easier to remove the first proton than the second, etc.
 - K_{a1} > K_{a2} > K_{a3}.....
- Successive equilibrium constants have less and less impact on pH
 - May not need to use all K values to solve a problem

Polyprotic Acids


If the difference between the K_a values for the first and 2nd, 3rd, etc. K_a values is 10³ or more, the pH generally depends on only the first dissociation.

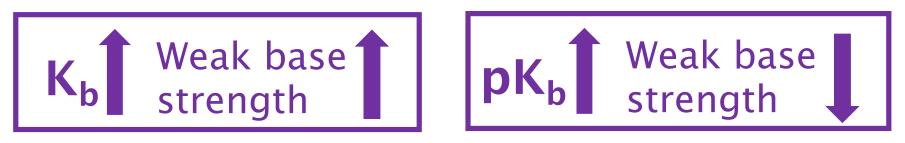
If the difference is smaller, additional dissociating protons may impact pH.

Name	Formula	K _{a1}	K _{a2}	K _{a3}
Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous Sulfuric Tartaric	$\begin{array}{c} H_{2}C_{6}H_{6}O_{6} \\ H_{2}CO_{3} \\ H_{3}C_{6}H_{5}O_{7} \\ H_{2}C_{2}O_{4} \\ H_{3}PO_{4} \\ H_{2}SO_{3} \\ H_{2}SO_{4} \\ H_{2}C_{4}H_{4}O_{6} \end{array}$	8.0×10^{-3} 4.3×10^{-7} 7.4×10^{-4} 5.9×10^{-2} 7.5×10^{-3} 1.7×10^{-2} Large 1.0×10^{-3}	$\begin{array}{c} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \\ 1.2 \times 10^{-2} \\ 4.6 \times 10^{-5} \end{array}$	4.0×10^{-7} 4.2×10^{-13}

Polyprotic Acid Calculations

Calculate the pH of a 1.5M solution of tartaric acid. $K_{a1} = 1.0 \times 10^{-3} K_{a2} = 4.6 \times 10^{-5}$

A: pH= 1.41 44


Base Ionization Constant: K_b **Equilibrium constant for base dissociation** Weak bases react with water to produce hydroxide ions:

$$B(aq) + H_2O(I) \xrightarrow{\longrightarrow} HB^+(aq) + OH^-(aq)$$
$$K_{eq} = \frac{[HB^+][OH^-]}{[B]} = K_b$$

K_b is the base ionization constant

- Quantitative measure of base strength
- Higher K_b = stronger base
- Sometimes discussed in terms of pK_b

$$pK_b = -log K_b$$

Types of Weak Bases

- Neutral substances that have an atom with a nonbonding pair of electrons
 - Examples include ammonia (NH₃) & amines
 - Amines described earlier in the chapter (slide 11)
- Anions (conjugate bases) of weak acids
 - Examples include HCO₃⁻, CIO⁻, HS⁻
 - Act as H⁺ acceptors in water
 - Anions of strong acids do not act as bases not an equilibrium process
- Insoluble/slightly soluble hydroxides
 - Soluble hydroxides are strong bases
 - Ca(OH)₂, Fe(OH)₃
 - Solubility equilibriums (K_{sp}) will be discussed in the next chapter

K_b Values for Some Common Weak Bases

	Name of Base	Formula	Structure	K _b	
	Ethylamine	$C_2H_5NH_2$	CH ₃ −CH ₂ − ^N −H H	4.5×10^{-4}	
	Methylamine	CH ₃ NH ₂	CH ₃ −Ň−H H ■	4.6×10^{-4}	
	Ammonia	NH ₃	H−Ň−H H ■	1.8×10^{-5}	
	Pyridine	C_5H_5N	N:	1.7×10^{-9}	
	Aniline	$C_6H_5NH_2$		7.4×10^{-10}	
	Urea	H ₂ NCONH ₂	О Н-Й-С-Й-Н Н Н	1.3×10^{-14}	
Caffeine	C ₈ H	I ₁₀ N ₄ O ₂ H	$ \begin{array}{c} $	5.3 × H ₃ —H	: 10 ⁻

K_a & K_b Relationship for Conjugate Acid/Base Pairs in Water

Base & water NH₃ (aq) + H₂O(I) \longrightarrow NH₄+(aq) + OH⁻(aq) K_b = 1.8x10⁻⁵ pK_b = 4.74

Conjugate acid & water $NH_4^+(aq) + H_2O(I) \xrightarrow{} NH_3(aq) + H_3O^+(aq) K_a = 5.6 \times 10^{-10}$ $pK_a = 9.26$

Add the two reactions together: multiply K values (Ch15) $2H_2O(I) \iff H_3O^+(aq) + OH^-(aq)$

 $K_{w} = K_{a} \times K_{b} = 1.0 \times 10^{-14}$ $1.8 \times 10^{-5} \times 5.6 \times 10^{-10} = 1.0 \times 10^{-14}$

 $\mathbf{pK}_{a} + \mathbf{pK}_{b} = \mathbf{14}$ High K_a must have 9.26 + 4.74 = 14 Low K_b & vice versa

Calculations Using K_b

1.) What is the pH of a 0.15M solution of NH_3 ? $K_b = 1.8 \times 10^{-5}$

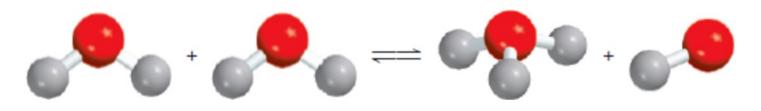
2.) Codeine is a weak organic base. A 5.0×10^{-3} M solution of codeine has a pH of 9.95. Calculate the pK_b and the value of K_b for this base.

Reminder: Do not use approximation method if you have the value of X!

A: $K_b = 1.62 \times 10^{-6}$ pK_b = 5.79

50

3.) A solution of ammonia in water has a pH of 11.17. What is the molarity of the solution? $K_b = 1.8 \times 10^{-5}$


Acid-Base Properties of Salts

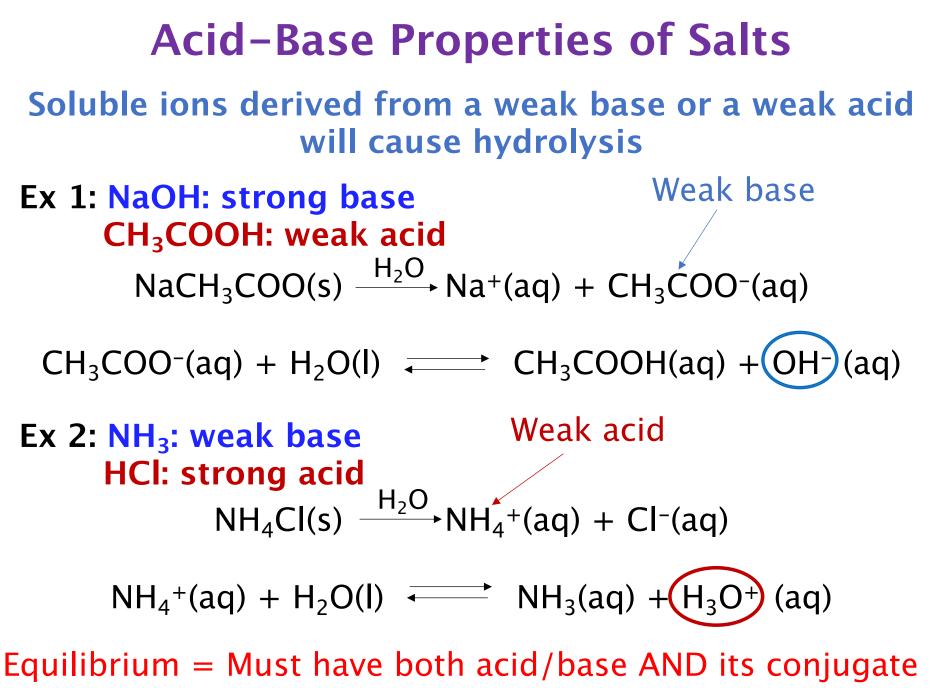
Salts are ionic compounds - contain cation (+) & anion (-)

- Can be formed from acid/base neutralization
- Dissociate (separate into ions) when dissolve in water
- Can sometimes impact pH through hydrolysis

Hydrolysis:

- Hydro = water
- lysis = to cut
- Reactions that break water into H^+ (H_3O^+) & OH^-

Extent to which a salt causes hydrolysis determines extent of its acid-base properties (if any)


Reminders: Strong vs. Weak No Equilibrium vs. Equilibrium $HCI(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CI^-(aq)$ NaOH(aq) \longrightarrow Na⁺(aq) + OH⁻(aq) $HNO_2(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + NO_2^-(aq)$ $NH_3(aq) + H_2O(I) \longrightarrow NH_4^+(aq) + OH^-(aq)$

Acid-Base Properties of Salts Hydrolysis can be caused by both cations & anions, but does not happen in every situation

Salts formed from conjugates of a strong acid + a strong base do not cause hydrolysis No equilibrium = no desire to reform parent acid/base

For salt solutions: no hydrolysis = neutral (no OH^- or H_3O^+)

NaCl(s) $\xrightarrow{H_2O}$ Na⁺(aq) + Cl⁻(aq) - no hydrolysis From NaOH From HCl strong base Strong acid LiNO₃(aq) $\xrightarrow{H_2O}$ Li⁺(aq) + NO₃⁻ (aq) - no hydrolysis From LiOH From HNO₃ strong base Strong acid 54

What if an ion can act as either an acid or a base?

Occurs with salts from polyprotic acids such as H_2CO_3 , H_3PO_4 , H_2SO_4 .

Need to compare K_a and K_b values

- Example: NaHCO₃
 - $HCO_3^{-}(aq) + 2H_2O(I) \longrightarrow CO_3^{2-}(aq) + H_3^{-}O^{+}(aq)$ $K_a = 4.8 \times 10^{-11}$ Acting
 - $HCO_3^{-}(aq) + H_2O(I) \longrightarrow H_2CO_3(aq) + OH^{-}(aq)$ $K_b = K_w/K_a = 2.4 \times 10^{-8}$
- K_b > K_a so solution will be basic!

Acting

as acid

as base

Determining if a Salt Solution is Acidic, Basic, or Neutral

Look at the ions that the salt dissociates into:

- Negative ion* is the potential base; ex: Cl⁻, NO₂⁻, CH₃COO⁻
 - Write the anion as an acid: HCl, HNO₂, CH₃COOH
 - If the ion would be part of a strong acid, it does not act as a base; ex: Cl⁻
 - If the ion would be part of a weak acid, it acts as a base when in a salt solution; ex: NO_2^- , CH_3COO^-
- Positive ion* is the potential acid: ex: Na+, NH₄+, Fe²⁺
 - Write the cation as a base: NaOH, NH₃, Fe(OH)₂
 - If the ion would be part of a strong base, it does not act as an acidic; ex: Na⁺
 - If the ion would be part of a weak base, it acts as an acid when in a salt solution; ex: NH₄+, Fe²⁺

Determining if a Salt Solution is Acidic, Basic, or Neutral

Look at the ions that the salt dissociates into:

- If both cation & anion have a strong parent, neither acts as an acid or base and the solution is neutral; ex: NaCl
- If both cation & anion have a weak parent; ex: NH₄NO₂
 - Acidity/basicity depends on relative strength
 - Math can be complicated
 - Qualitatively:
 - \circ K_a < K_b basic solution
 - \circ K_a > K_b acidic solution
 - \circ K_a \approx K_b pretty close to neutral

Determining if a Salt Solution is Acidic, Basic, or Neutral

1.) Predict whether aqueous solutions of the following compounds are acidic, basic, or neutral.

a.) NH₄NO₃

b.) FeCl₃

c.) Na₂CO₃

d.) KCIO₄

e.) ZnF₂

2.) For each of the following pairs, indicate which salt would form the more acidic (i.e. less basic) 0.010M solution.

a.) NaNO₃ or $Fe(NO_3)_3$

b.) CH₃NH₃Cl or BaCl₂

c.) KNO₂ or KNO₃

d.) $(NH_4)_2SO_4$ or $(NH_4)_2SO_3$

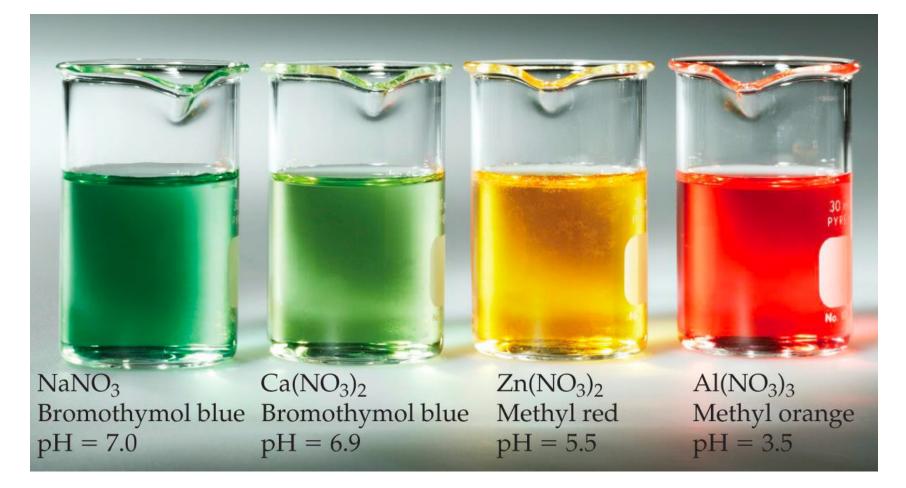
3.) Calculate the [OH⁻] and pH of a 0.10M NaCN solution. K_a for HCN is 6.2×10^{-10} .

A:
$$[OH^{-}] = 1.3 \times 10^{-3} M$$

pH = 11.10 63

4.) Calculate the pH of a 0.42M NH₄Cl solution. K_b for NH₃ is 1.8x10⁻⁵

Hydration of Metal Ions


Salts with small, highly charged metal cations (e.g. Al³⁺, Fe³⁺, Cr³⁺, Be²⁺) and the conjugate base of a strong acid can also have acidic properties

Example: AICl₃ dissolved in water produces:

 $AI(H_2O)_6^{3+}(aq) + H_2O(I) \xrightarrow{} AI(OH)(H_2O)_5^{2+}(aq) + H_3O^{+}(aq)$ $K_a = 1.3 \times 10^{-5} \rightarrow Acid! + 3CI^{-}(aq)$

- e⁻ in water molecules are pulled toward metal ion
- O-H bonds in attached waters become more polarized
- H⁺ dissociates from water molecule forming H₃O⁺

Hydration of Metal Ions

Higher charge & smaller size make cations more acidic

Less acidic

 $Na^{+} < Ca^{2+} < Zn^{2+} < AI^{3+}$

More acidic

Hydration of Metal Ions

Which member of each pair would produce a more acidic solution & why?

1.) CuCl or $Cu(NO_3)_2$

2.) CrCl₃ or NiCl₃