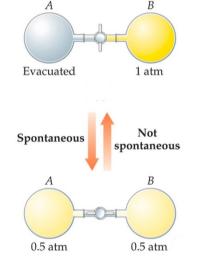

Chapter 15 Entropy and Gibbs Energy

Thermodynamics

Study of Energy Changes During Observed Processes $\Delta = change$

Enthalpy (H): Energy of reaction, often described in terms of heat (CHM 101)

Entropy (S): Measurement of disorder Free Energy (G):


- Used to predict whether a process will occur spontaneously
- Spontaneously = without assistance
- Spontaneous process = one that will occur under a given set of conditions
- Depends on enthalpy, entropy, and temperature

$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$

Spontaneous Processes

- Processes that are spontaneous in one direction are non-spontaneous in the other direction.
- Spontaneous processes can be fast (e.g. explosion) or slow (e.g. rusting)
- Spontaneity generally temperature dependent
 - > 0°C, ice melting is spontaneous
 - < 0°C, ice freezing is spontaneous

Water flows naturally downhill but must be pumped uphill

Spontaneous

Nonspontaneous

Spontaneous for $T > 0^{\circ}C$

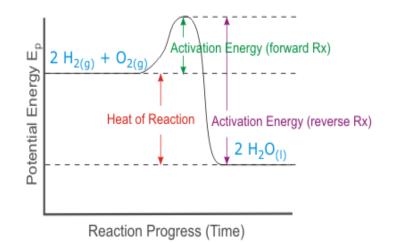
Spontaneous Processes

Which of the following processes are spontaneous?

- (a) Separating a mixture of N_2 and O_2 into two separate samples
- (b) Alignment of iron filings in a magnetic field
- (c) Dissolution of HCl(g) in water to form HCl(aq)
- (d) Sublimation of CO₂(s) at -100°C, 1 atm (CO₂ sublimation point is -78°C, 1 atm)
- (e) Reaction of copper with oxygen to form CuO under typical environmental conditions in RI.

Enthalpy & Spontaneity

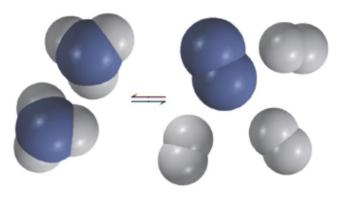
Reaction of H₂ & O₂ to from H₂O


- Used in fuel cells
- Exothermic reaction
- ΔH = -286 kJ/mol
- Favors H₂O production

Reality at room temp:

- Not a spontaneous reaction
- H₂ & O₂ remain unreacted
- No water is formed without added energy to initiate
- $E_{act} = +112 kJ/mol too high$

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$


Enthalpy determines the equilibrium state, but enthalpy alone does NOT determine spontaneity Also need to consider entropy

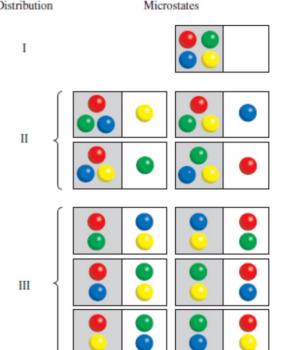
Entropy is defined as a measure of

Solvent

the randomness or disorder of a system, or how spread out a system's energy is

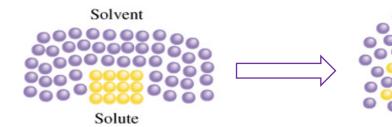
- It is related to the various modes of motion in molecules (or of ions/atoms)
- Entropy is a state function (like enthalpy & total energy)
 - State functions are defined by final-initial conditions (independent of process)
 - $\Delta S = S_{\text{final}} S_{\text{initial}}$
- Entropy is increased when, for example:
 - Moles of products > moles of reactants
 - More complex molecules are broken down into smaller, simpler molecules
 - There is a phase change to a more disordered phase (disorder: gas>liquid>solid)

Entropy & Microstates


Entropy is related to the number of "microstates" through the equation:

S = k In W

k = Boltzmann constant (1.38x10⁻²³ J/K) W = # microstates.


$$\Delta S = S_f - S_i$$

= k In W_f - k In W_i
= k In (W_f/W_i)

Microstate is a term used to describe the number of ways that a given state can be achieved.

More possible variation = More microstates = Higher S

Entropy & Solvation

Generally, dissolving a solute in a solvent <u>increases</u> entropy

Solution

However:

When solutes are dissolved, the water molecules around them have less ability to move due to interactions with the solute (H-bonds, ion-dipole interactions, etc.).

In some cases (especially with large ions or those with large charges) this results in an overall decrease in entropy.

Dissolution Equation	$\Delta S_{soin}^{*} \left(J/k \cdot mol \right)$
$\mathrm{NH}_4\mathrm{NO}_3\left(s\right) \rightarrow \mathrm{NH}_4^+\left(aq\right) + \mathrm{NO}_3^-\left(aq\right)$	108.1
$AlCl_3(s) \rightarrow Al^{3+}(aq) + 3Cl^{-}(aq)$	-253.2
$\operatorname{FeCl}_3(s) \to \operatorname{Fe}^{3+}(aq) + 3\operatorname{Cl}^-(aq)$	-266.1

Predicting Entropy Changes

Indicate whether the following produces an increase or decrease in the entropy of the system:

(a) $CO_2(s) \rightarrow CO_2(g)$

(b) $CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$

(c) $NH_4CI(s) \rightarrow HCI(g) + NH_3(g)$

(d) NaCl(s) \rightarrow NaCl(aq)

CHM 101 Review: Calculating Reaction Enthalpy from Standard Enthalpies of Formation

 $\Delta H_{\text{reaction}} = \Sigma \Delta H_{\text{products}} - \Sigma \Delta H_{\text{reactants}}$ ($\Sigma = \text{sum}$)

 $C_2H_5OH(I)+3 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$

- ΔH_{f}° Reactants:
- C₂H₅OH (I): -277.7 kJ/mol x 1 = -277.7 kJ/mol
- O₂: 0.0 kJ/mol x 3 = 0.0 kJ/mol
- Total reactants = -277.7kJ/mol + 0.0kJ/mol = -277.7kJ/mol
- ΔH_{f}° Products
- CO₂(g): -393.5 kJ/mol x 2 = -787.0kJ/mol
- H₂O(I): -285.8 kJ/mol x 3 = -857.4kJ/mol
- Total products = -787.0kJ/mol + -857.4kJ/mol = -1644.4kJ/mol
- $\Delta H^{\circ} = \Sigma \Delta H_{\text{products}} \Sigma \Delta H_{\text{reactants}}$ = -1644.4kJ/mol - (-277.7kJ/mol) = -1366.7kJ/mol

Calculating Reaction <u>Entropy</u> from Standard <u>Entropies</u>

 $\Delta S_{reaction} = \Sigma S^{\circ}_{products} - \Sigma S^{\circ}_{reactants} \qquad (\Sigma = sum)$ $C_2 H_5 OH(I) + 3 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$

S° Reactants:

- C₂H₅OH (I): 161.2 J/mol K x 1 = 161.2 J/mol K
- O₂: 205.0 J/mol K x 3 = 615.0 J/mol K
- Total reactants = 161.2 J/mol K + 615.0 J/mol K=776.2 J/mol K

S° Products

- CO₂(g): 213.6 J/mol K x 2 = 427.2 J/mol K
- H₂O(I): 69.9 J/mol K x 3 = 209.7 J/mol K
- Total products = 427.2 J/mol K + 209.7 J/mol K =636.9 J/mol K
- $\Delta S^{\circ} = \Sigma S_{\text{products}} \Sigma S_{\text{reactants}}$ = 636.9 J/mol K - 776.2 J/mol K) = -139.3 J/mol K

Some Standard Molar Entropy Values (larger table in Appendix 2 of Textbook)

TABLE 15.2	Standard Entro Substances at 2	py Values (S°) fo	or Some
Substance	S° (J/K · mol)	Substance	<i>S</i> ° (J/K ⋅ mol)
Substance	3 (J/K · mor)	Substance	3 (J/K · mor)
$\mathrm{H}_{2}\mathrm{O}\left(l\right)$	69.9	C(diamond)	2.4
$\mathrm{H}_{2}\mathrm{O}\left(g\right)$	188.7	C(graphite)	5.69
Na (<i>s</i>)	51.05	$O_2(g)$	205.0
Na (l)	57.56	$O_3(g)$	237.6
Na (g)	153.7	$F_2(g)$	203.34
144 (8)		12(8)	
$\operatorname{He}(g)$	126.1	$\operatorname{Au}(s)$	47.7
$\operatorname{Ne}(g)$	146.2	$\operatorname{Hg}(l)$	77.4
S° _{gas}	> S° _{liquid}	$> S^{\circ}_{solid}$	
	- : : I		

 $FeCl_3(s)$

NaCl(s)

For similar molecules, S° tends to increase with:

- Increasing molar mass
- Increased number of atoms in formula

142.3

72.3

Some Enthalpies of Formation at 25°C

Substance	Δ <i>H</i> [°] _f , kJ/mol	Ion	ΔH_{f}° , kJ/mol
HCl(g)	-92.31	H ⁺	0
HF(g)	-271.1	Na ⁺	-240.1
HI(g)	26.48	K+	-252.4
$H_2O(g)$	-241.8	NH4 ⁺	-132.5
$H_2O(1)$	-285.8	Ag ⁺ Mg ²⁺ Ca ²⁺	+105.6
$NH_3(g)$	-46.11	Mg ²⁺	-466.9
NO(g)	90.25	Ba ²⁺	-542.8 -537.6
$N_2O(g)$	82.05	OH ⁻	-230.0
$NO_2(g)$	33.18	Cl⁻	-167.2
$N_2O_4(g)$	9.16	NO_3^-	-205.0
$SO_2(g)$	-296.8	CO_{3}^{2-}	-677.1
$SO_3(g)$	-395.7	SO4 ²⁻	-909.3

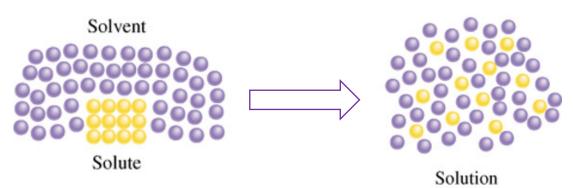
All ∆H_f are for standard conditions 25°C, 1 atm, 1M aqueous solution, 1 mole product Enthalpy values will be needed for Gibbs Energy Calcs.

Calculating Reaction Entropy from Standard Entropies

1. What is the molar change in entropy for water freezing at 25°C? A: -28.9 J/mol K

2. What is the standard entropy change for the following reaction? A: 180.0 J/K Al₂O₃ (s) + 3H₂(g) \rightarrow 2 Al(s) + 3H₂O(g)

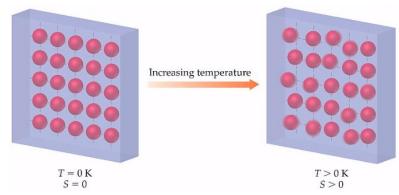
```
From table of standard
entropies (J/mol K):
S° H<sub>2</sub>O(s): 41.1
S° H<sub>2</sub>O(l): 70.0
S° H<sub>2</sub>O(g): 188.8
S° Al<sub>2</sub>O<sub>3</sub>(s): 50.9
S° H<sub>2</sub>(g): 130.7
S° Al(s): 28.3
```


Three Laws of Thermodynamics

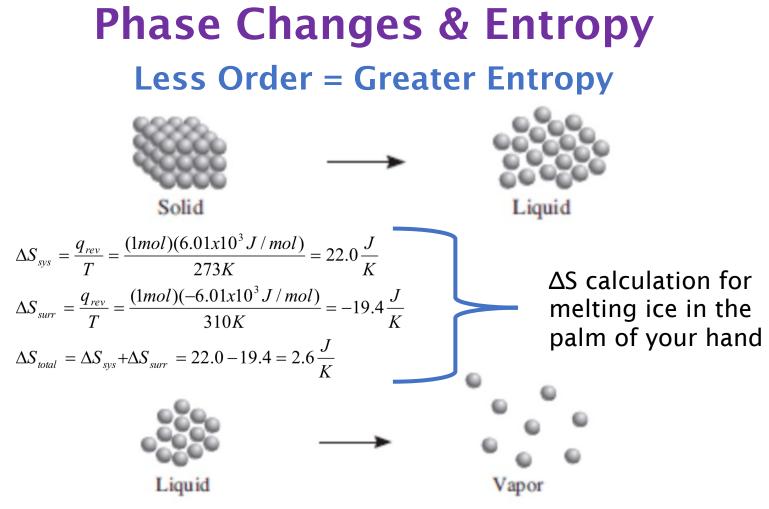
First Law of Thermodynamics:

- Energy cannot be created or destroyed
- The total energy of the Universe must be constant
- Energy can be converted from one form to another, or transferred between systems & surroundings

Second Law of Thermodynamics:

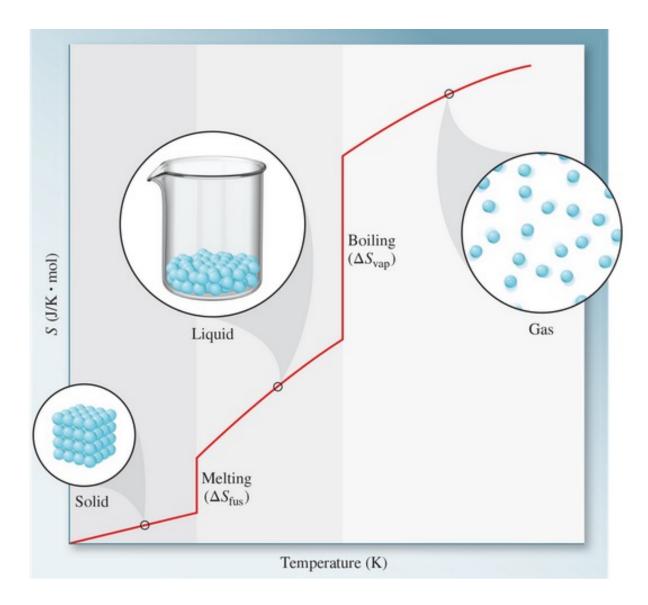

- The entropy of the Universe ($\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$) increases for spontaneous processes
- For spontaneous (irreversible) processes: $\Delta S_{univ} > 0$
- For reversible processes: $\Delta S_{univ} = 0$

Three Laws of Thermodynamics


Third Law of Thermodynamics:

- The entropy of a pure crystalline substance at absolute zero (OK) is zero.
- Scientists have come close to absolute zero, but 0K has not yet been achieved
- At 0K there is absolutely no molecular movement
- Provides a starting point for determining ΔS
 - Start as close to 0K as possible, warm material up to a specific temperature and calculate ΔH
 - $S = \Delta H/T$
 - Note: Since S is temp. dependent, to use this equation the process must be isothermal.

Calculating Entropy (S) from AH


The normal boiling point of ethanol (C_2H_5OH , 46.07g/mol) is 78.3°C and its molar enthalpy of vaporization is 38.56 kJ/mol. What is the change in entropy in the system when 68.3g of gaseous ethanol at 1 atm condenses to liquid at the normal boiling point? A: -163 J/K

Melting & Vaporization are favored by entropy

Freezing & Condensation (exothermic) are favored by enthalpy

What determines which process will occur?

Spontaneity is Temperature Dependent!

Gibbs Free Energy (G)

The maximum useful work that can be done by a system on its surroundings in a spontaneous process at constant T & P.

$\Delta \mathbf{G} = \mathbf{\Delta} \mathbf{H} - \mathbf{T} \mathbf{\Delta} \mathbf{S}$

The equation comes from thermodynamic principles

Eq1: $\Delta S_{univ}^{\circ} = S_{surr}^{\circ} + S_{sys}^{\circ}$ Eq2: $\Delta S_{surr}^{\circ} = -\Delta H_{sys}/T$ Substitute Eq2 for S_{surr}° $\Delta S_{univ}^{\circ} = (-\Delta H_{sys}/T) + S_{sys}^{\circ}$ Multiply by -T to get $-T\Delta S_{univ}^{\circ} = \Delta H_{sys} - T\Delta S_{sys}$ Let $-T\Delta S_{univ}^{\circ} = \Delta H - T\Delta S$

Standard Free Energy, ΔG°

Free energy change when reactants and products are in their standard states

(pure material, 1 atm, 1M if in solution, zero for elements in standard state)

 $\Delta G^{\circ}_{reaction} = \Sigma G_{f}^{\circ}_{products} - \Sigma G_{f}^{\circ}_{reactants}$

Gibbs Free Energy & Spontaneity

 $\Delta G < 0$ (negative), the process is spontaneous

 $\Delta G > 0$ (positive), the process is non-spontaneous

 $\Delta G = 0$ the process is at equilibrium

ΔS ΔG ΔΗ **Spontaneous?** negative positive negative yes positive positive negative no negative negative ? **Temp Dependent** positive positive **Temp Dependent** ?

Gibbs Free Energy & Spontaneity

TABLE 15.4	Predicting the Sign of ΔG Using \square Equation 15.10 and the Signs of ΔH and ΔS				
When ΔH Is	And ΔS Is	∆ <i>G</i> Will Be	And the Process Is	Example	
Negative	Positive	Negative	Always spontaneous	$2\mathrm{H}_{2}\mathrm{O}_{2}\left(aq\right)\rightarrow2\mathrm{H}_{2}\mathrm{O}\left(l\right)+\mathrm{O}_{2}\left(g\right)$	
Positive	Negative	Positive	Always nonspontaneous	$3O_2(g) \rightarrow 2O_3(g)$	
Negative	Negative	Negative when $T\Delta S < \Delta H$	Spontaneous at low T	$\mathrm{H}_{2}\mathrm{O}\left(l\right)\to\mathrm{H}_{2}\mathrm{O}\left(s\right)$	
		Positive when $T\Delta S > \Delta H$	Nonspontaneous at high T	(freezing of water)	
Positive	Positive	Negative when $T\Delta S > \Delta H$	Spontaneous at high T	$2\mathrm{HgO}\left(s\right) \rightarrow 2\mathrm{Hg}\left(l\right) + \mathrm{O}_{2}\left(g\right)$	
		Positive when $T\Delta S < \Delta H$	Nonspontaneous at low T		

Gibbs Free Energy & Spontaneity

1. A certain reaction has $\Delta H^{\circ} = -19.5 \text{ kJ}$ and $\Delta S^{\circ} = 42.7 \text{ J/K}$. (a) Is the reaction exothermic or endothermic? A: exothermic

(b) Does the reaction lead to an increase or decrease in the randomness or disorder of the system? A: increase

(c) Calculate ΔG° at 298K A: -32.2kJ

(d) Is the reaction spontaneous at 298K under standard conditions? A: yes

2. Is the following process spontaneous at 25°C? at 75°C? $Ca_3(PO_4)_2(s) \longrightarrow 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$ A: no

Step 1: Calculate ΔH°

Step 2: Calculate ΔS°

From table of standard enthalpies (H°) (kJ/mol): $Ca_3(PO_4)_2(s)$: -4121 $Ca^{2+}(aq)$: -542.8 $PO_4^{3-}(aq)$: -1277.4

From table of standard entropies (S°) (J/mol K): $Ca_3(PO_4)_2(s)$: +236 $Ca^{2+}(aq)$: -53.1 $PO_4^{3-}(aq)$: -220.5

Step 3: Calculate ∆G[°]

3. At what temperature will the following process become spontaneous?

 $Ca_{3}(PO_{4})_{2}(s) \implies 3Ca^{2+}(aq) + 2PO_{4}^{3-}(aq)$