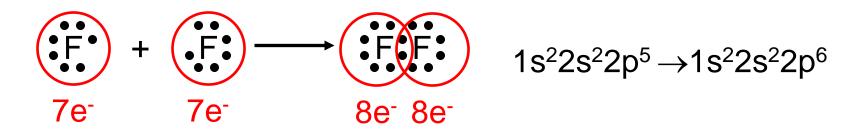

Chapter Six Representing Molecules

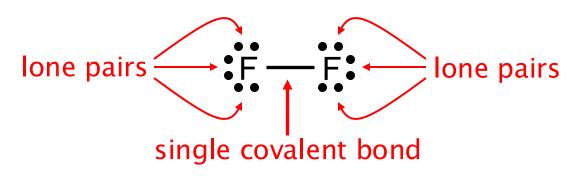
Effect of Valence Electrons on Elements


Octet Rule:

- Elements most stable with 8 valence electrons (2s + 6p)
- Noble gases have 8 valence electrons
 - No e want to be added or removed
 - Why they are so unreactive
- Main group elements form ions to become isoelectronic with the noble gases
 - Same electron configuration
- He & H follow duet rule
 - 2 e⁻; too small for 8e⁻

Lewis Structures

Lewis structures represent covalent bond formation



Bonding Pairs: Electrons shared by both atoms

- Represented by a dash (-) between bonded atoms

Lone Pairs: Non-shared electrons count for 1 atom

Represented by a pair of dots (●●) around atom

Multiple Bonds

More than one pair of electrons is shared between atoms so each atom can form an octet.

Single Bond: 1 shared pair: 1 dash (-)

Double bonds: 2 shared pairs: 2 dashes (=)

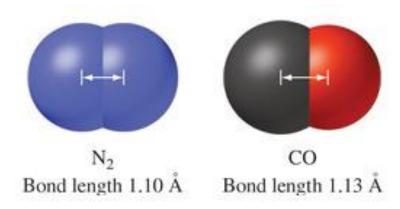
Triple bonds: 3 shared pairs: 3 dashes (≡)

Allows atoms in a molecule to share extra e if there are not enough for the central atom

$$O = C = O$$
double bonds

Multiple Bonds

The number of electrons shared impacts the length and strength of a covalent bond


In general:

Single Bond: longest weakest (lowest bond energy)

Double bonds: shorter medium strength

Triple bonds: shortest strongest (highest bond energy)

Bond length is measured as the distance between the nuclei of two bonded atoms

Writing Lewis Structures: Hints & Tips

Electronegativity

- Central atom usually has the lowest electronegativity (atom lower or to the left in periodic table)
- Terminal atoms (except H) have higher electronegativities

Terminal Atoms

- Bonded to only one other atom
- Hydrogen atoms are terminal atoms
- Halogens (col 17) are often terminal atoms

Oxoacids

O H

Hydrogen atoms are bonded to oxygen atoms in oxoacids

Hints & Tips for Drawing Lewis Structures Con't

- Final structure must include same number of valance e⁻ as sum of valance e⁻ from all atoms in the molecule
- Final structure must satisfy octet rule (unless it is an exception)
- Start with single bonds, try double then triple if necessary
- **Hydrogen** only wants one more e⁻
 - forms ONE SINGLE BOND
 - will not be between two atoms
- Carbon usually does not have lone pairs
 - all 8 e⁻ must come from single, double, or triple bonds
- Halogens only want one more e
 - generally only form one single bond
- Molecules are often symmetrical
 - try single atom in middle with other atoms around it

Example: Write the Lewis Structure of HNO

- 1. Add up the valence electrons in the structure 1(H) + 5(N) + 6(O) = 12 valence electrons
- 2. Arrange the atoms & place bonding electrons H-N-O nitrogen less electronegative, put in center
- 3. Place e- pairs around terminal atoms to get 8

4. Place remaining electron pairs on central atom

$$H-N-O$$
:

5. Add double bond to finish nitrogen octet (8)

$$H-N=O$$

Drawing Lewis Structures:

CH₄

 N_2

 CO_2

NF₃

Drawing Lewis Structures: Polyatomic ions & simple organic molecules

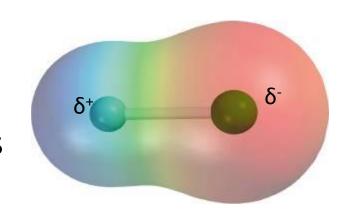
CO₃²⁻

 C_2H_6

 $C_2H_2I_2$

 C_2H_6O

 C_3H_6O

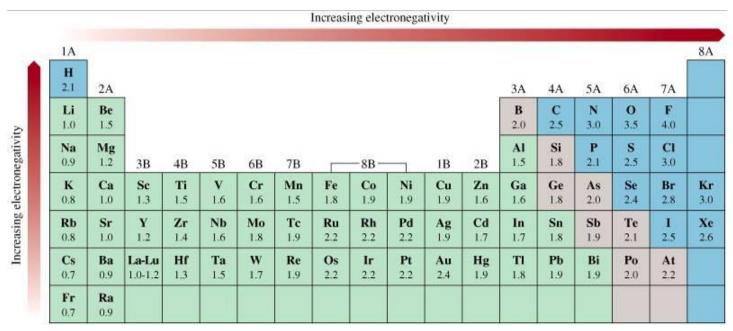

Orgo - degrees of unsaturation:

 C_nH_{2n+2} – all single bonds C_nH_{2n} – one double bond (or ring) C_nH_{2n-2} – 1 triple bond, 2 double bonds, 2 rings, double bond + ring

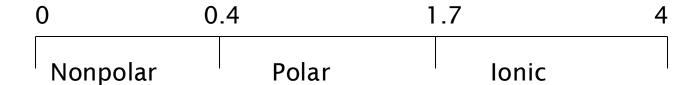
- 2 for each double bond/ring
- 4 for each triple bond

Electronegativity

- The ability of an atom to attract e
- F is the most electronegative atom
- Nonmetals high electronegativities


Polar Covalent Bonds

- Differences in electronegativity result in unequal sharing of electrons between atoms
- More electronegative atom has a partial neg. charge (δ -)
- More electropositive atoms has a partial pos. charge (δ^+)

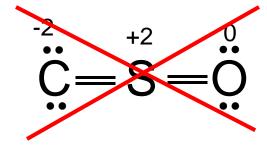

Percent Ionic Character

- Measure of polarity of bond
 - 100% ionic is full transfer of electron, no sharing
 - 100% covalent is equal sharing, H₂, Cl₂, etc.

Electronegativities of Common Elements

Electronegativity difference helps determine bond type

Use to make sure that a metal-nonmetal bond is ionic and to determine if a covalent bond is polar or non-polar.


F & Na: 4.0 - 0.9 = 3.1 = ionic C & H: 2.5 - 2.1 = 0.4 = nonpolar covalent

Formal Charge

Difference between the # of valence e⁻ in a free atom & the # of e⁻ assigned to that atom in a Lewis structure.

Molecule is most stable if formal charge is 0 for each atom.

$$\overset{\circ}{\mathbf{S}} = \overset{\circ}{\mathbf{C}} = \overset{\circ}{\mathbf{C}}$$

- Most likely Lewis structure has lowest formal charges
- Negative F.C. must be on more electroneg. atom
- Sum of formal charges:

Molecules = 0 Polyatomic ions = charge

Calculating formal charge

F.C. = $\# \text{ ve}^-$ - (# of lone e- + # bonds)

$$H - N = O$$

Resonance

If a molecule or ion can be represented by 2 or more Lewis structures that differ only in electron location, the true structure is a blend of those structures.

- Electrons are moving around the molecule
- Neither bond is completely single or double (1.5)

$$O - S = O \Leftrightarrow O = S - O$$
:

Resonance Structures

- Equivalent Lewis structures for a single molecule
- Formal charges will usually be present

Delocalization

- Electrons are shared by more than two atoms
- Stabilizes the molecule

Exceptions to the Octet Rule: Incomplete Octet

Not enough electrons for central atom to have 8

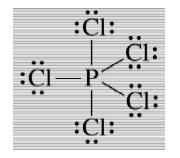
Be
$$-2e^{-}$$
Be $-2e^{-}$
 $2H - 2x1e^{-}$
 $4e^{-}$

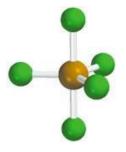
Terminal atoms unwilling to donate more electrons

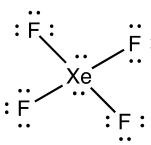
- Would destabilize terminal atoms & create formal charge

$$B - 3e^{-}$$
 $3F - 3x7e^{-}$
 $24e^{-}$
 $F - B - F$
 BF_{3}
 $F - B - F$
 BF_{3}
 $F - B - F$
 BF_{3}
 BF_{3}

Free Radicals and Expanded Octets


Free Radicals:


- Molecules with an odd number of valence electrons (N)
- Extremely reactive, odd electron wants to be part of a pair


$$O-N=O$$

Compounds with expanded valence shells

- Central atom has more than eight electrons
- May have lone pair electrons as well as bonding pairs
- Must be in third row on periodic table or higher (3rd, 4th, 5th, etc.) have empty d orbitals to put electrons in
- Often occurs when expanded octet minimizes formal charge

Drawing Lewis Structures: Exceptions to the Octet Rule

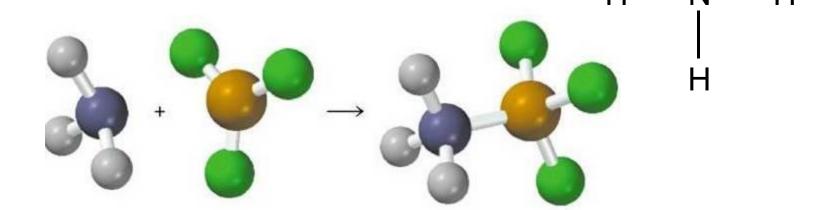
XeCl₂

SO₄²⁻

 PI_5

BeF₂

Coordinate Covalent Bonds


1 atom provides both electrons

Electrons are then shared between 2 atoms

Ex: BF₃ and NH₃

B needs 2 electrons to fill octet

N has a lone pair to share

Seen often with transition metals - can accept electrons into empty d-orbitals