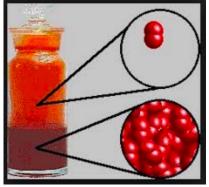
Chapter 16

Chemical Equilibrium

$CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$

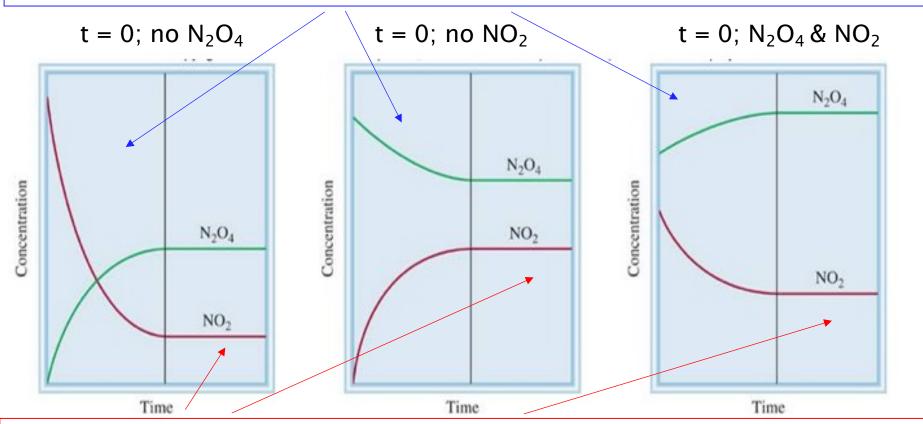

Equilibrium: A Dynamic Process

Opposing processes occur at equal rates

- Forward & reverse reactions occur at equal rates
- No outward change is observed
- **<u>Ratio</u>** of reactants to products is constant
- Temperature dependent
- Other factors can also shift equilibrium toward products or reactants

Physical Equilibrium

Ex: Equilibrium between phases $Br_2(I) \implies Br_2(g)$



Chemical Equilibrium Equilibrium between reactants & products $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ Colorless Brown

Initial conditions may vary – concentrations will adjust to establish equilibrium $N_2O_4(g) \implies 2NO_2(g)$

As a system approaches equilibrium, both the forward and reverse reactions are occurring

At equilibrium, the forward and reverse reactions are proceeding at the same rate, so the relative concentrations remain constant.₃

Equilibrium Constant (K_c) $N_2O_4(g) \implies 2NO_2(g)$

At equilibrium, [N₂O₄] & [NO₂] are constant

- NOT EQUAL
- Not static both forward & reverse reactions continue
- Actual amounts depend on system

Rate (forward) = Rate (reverse): $k_1[N_2O_4] = k_1[NO_2]^2$

$$\frac{k_1}{k_{-1}} = \frac{[NO_2]^2}{[N_2O_4]} = K_c$$

	TABLE 15.1 The NO ₂ -N ₂ O ₄ System at 25° C						
[conc] not equal 📉	Initial Concentrations (M)		Equilibrium Concentrations (M)		Ratio of Concentrations at Equilibrium		
	[NO ₂] []	N_2O_4	[NO ₂]	[N ₂ O ₄]	$\frac{[NO_2]}{[N_2O_4]}$	$\frac{[NO_2]^2}{[N_2O_4]}$	Ratio is equal
		0.670	0.0547	0.643	0.0851	4.65×10^{-3}	
	0.0500	0.446	0.0457	0.448	0.102	4.66×10^{-3}	
		0.500	0.0475	0.491	0.0967	4.60×10^{-3}	
		0.600 0.000	0.0523 0.0204	0.594 0.0898	0.0880 0.227	4.60×10^{-3} 4.63×10^{-3}	

Equilibrium Expression

For the reaction: $aA + bB + \dots \rightarrow cC + dD + \dots$

The Equilibrium Expression is: $K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$

For an Equilibrium Expression:

- Concentrations of products are in numerator
- Concentrations of reactants are in denominator
- They are the concentrations at equilibrium
- Exponents ARE coefficients from balanced equation
- Units generally not included
- Also known as a Mass Action Expression

Note difference from rate equation – equilibrium expression IS BASED ON BALANCED EQUATION

Impact of How an Equation is Balanced Reaction A Reaction B $SO_2(g) + \frac{1}{2}O_2(g) \iff SO_3(g) \quad 2SO_2(g) + O_2(g) \iff 2SO_3(g)$ $K_c = \frac{[SO_3]}{[SO_2][O_2]^{1/2}} \qquad K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$

Equilibrium constants change if the reaction is balanced differently

Numerical values for K_c are related, but different K_c (reaction B) = $[K_c$ (reaction A)]²

It is essential to know how the reaction was balanced

K_p The Pressure Version of K_c

Remember the Gas Laws – Chapter 5!

- In a closed system, pressure < concentration
 - The equilibrium expression can also be written in terms of pressure
 - Very useful since gas phase reactions are often monitored via pressure

$$K_{p} = \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$$

 \propto = proportional to

7

Writing Equilibrium Expressions

Write the equilibrium constant expression K_p and K_c for: (a) 3 NO(g) \Longrightarrow N₂O(g) + NO₂(g)

(b) $CH_4(g) + 2 H_2S(g) \longrightarrow CS_2(g) + 4 H_2(g)$

Manipulating Chemical Equations & K_c

When reversing a chemical equation, invert K_c

$$cC + dD \Longrightarrow aA + bB$$
 $K_c = \frac{[A]^a [B]^o}{[C]^c [D]^d} = \frac{1}{K_c}$

When multiplying coefficients by n, raise K_c to nth power

$$n(cC + dD \Longrightarrow aA + bB) \qquad K_c = \frac{[A]^{na}[B]^{nb}}{[C]^{nc}[D]^{nd}} = K_c^n$$

When adding equations, multiply the K_c values

$$eE \longrightarrow fF$$

$$A + bB \longrightarrow cC + dD$$

$$K_{c} = \frac{[C]^{c} [D]^{d} [F]^{f}}{[A]^{a} [B]^{b} [E]^{e}} = K_{1} \times K_{2}$$

$$E + aA + bB \longrightarrow fF + cC + dD$$

Manipulating K values

1. For the formation of NH_3 from N_2 and H_2

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

 $K_p = 4.34 \times 10^{-3}$ at 300°C. What is the value of K_p for the reverse reaction? A: 2.30×10²

2. How does the magnitude of the equilibrium constant K_p for the reaction

2 HI(g) \longrightarrow H₂(g) + I₂(g)

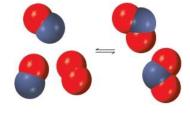
change if the equilibrium is written as

6 HI(g) \implies 3 H₂(g) + 3 I₂(g)

A: K_p is cubed

3. Given that, at 700 K, $K_p = 54.0$ for the reaction: $H_2(g) + I_2(g) \longrightarrow 2 HI(g)$

and $K_p = 1.04 \times 10^{-4}$ for the reaction:


 $N_2(g) + 3 H_2(g) \implies 2 NH_3(g)$

determine the value of K_p for the following reaction at 700K:

 $2 \text{ NH}_3(g) + 3 \text{ I}_2(g) \longrightarrow 6 \text{ HI}(g) + \text{N}_2(g)$

Types of Equilibria: Homogeneous (K_c & K_p) All products & reactants are in the same phase

- All chemicals are in units of molarity (mol/L) K_c: Can be either gas or aqueous solutions
- K_p: All chemicals in **gas** phase Pressure is the partial pressure - units often atmospheres $2CO(g) + O_2(g) \implies 2CO_2(g)$

- $K_c \& K_p \text{ are related: } K_p = K_c \cdot (RT)^{\Delta n}$
- Derived from ideal gas law
- $R = gas constant (0.0821 L \cdot atm/mol \cdot K)$
- T = temperature in Kelvin
- $\Delta n = moles$ gaseous products moles gaseous reactants

 $K_p = K_c$ if moles product gas = moles reactant gas If moles product gas \neq moles reactant gas, there will be a change in pressure 12

Calculating K_p from K_c

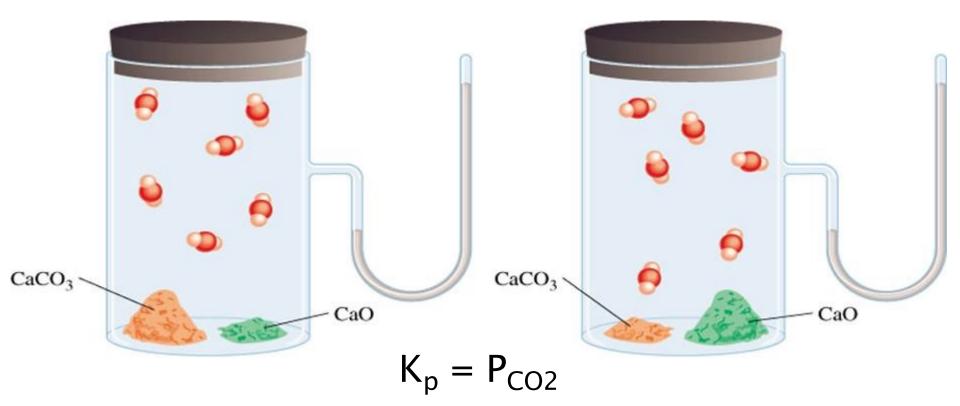
Calculate K_p for the following reactions at 1500°C.

 $2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g) \qquad 2NO(g) \rightleftharpoons N_2(g) + O_2(g)$ $K_c = 12800 \qquad K_c = 12800$ $\Delta n_{gas} = -1 \qquad \Delta n_{gas} = 0$ $K_p = K_c \cdot (RT)^{\Delta n}$

Types of Equilibria: Heterogeneous

Are the equilibrium constants for the following two reactions the same?

 $SO_3(g) + H_2O(g) \stackrel{\longrightarrow}{\longleftarrow} H_2SO_4(g) \& SO_3(g) + H_2O(I) \stackrel{\longrightarrow}{\longleftarrow} H_2SO_4(aq)$


" V " – [H ₂ SO ₄ (g)]	"K ₂ " = $\frac{[H_2SO_4(aq)]}{[H_2SO_4(aq)]}$
$"K_1" = \frac{1}{[SO_3(g)] [H_2O(g)]}$	$[SO_3(g)] [H_2O(I)]$

"K₁" would equal "K₂" <u>ONLY IF</u> $[H_2SO_4(g)] = [H_2SO_4(aq)]$ <u>AND</u> $[H_2O(g)] = [H_2O(I)]$

$[H_2SO_4(g)]$	dependent on partial pressure	variable
$[H_2SO_4(aq)]$	# moles dissolved in water	variable
$[H_2O(g)]$	dependent on partial pressure	variable
[H ₂ O(l)]	1 g/mL = 1000 g/L	56M
	for 1L: 1000g(1mol/18g) = 56 mol	
The two	o equilibrium constants are NO	T the same!

THE PHASE MATTERS!

Equilibria Involving Pure Solids & Liquids $CaCO_3(s) \iff CaO(s) + CO_2(g)$

 P_{CO2} does not depend on the amount of CaCO₃ or CaO As long as there is <u>some</u> CaCO₃ & CaO in the system, the amount of CO₂ above the solid will remain the same

Equilibria Involving Mixed Phases (i.e. Heterogeneous)

The subscript "eq" is for general equilibria K_c & K_p are specific types of K_{eq}

Equilibrium expressions <u>only include gaseous & aqueous</u> materials (solids & liquid are NOT included)

$$SO_3(g) + H_2O(I) \longrightarrow H_2SO_4(aq)$$
 $K_{eq} = \frac{[H_2SO_4(aq)]}{[SO_3(g)]}$

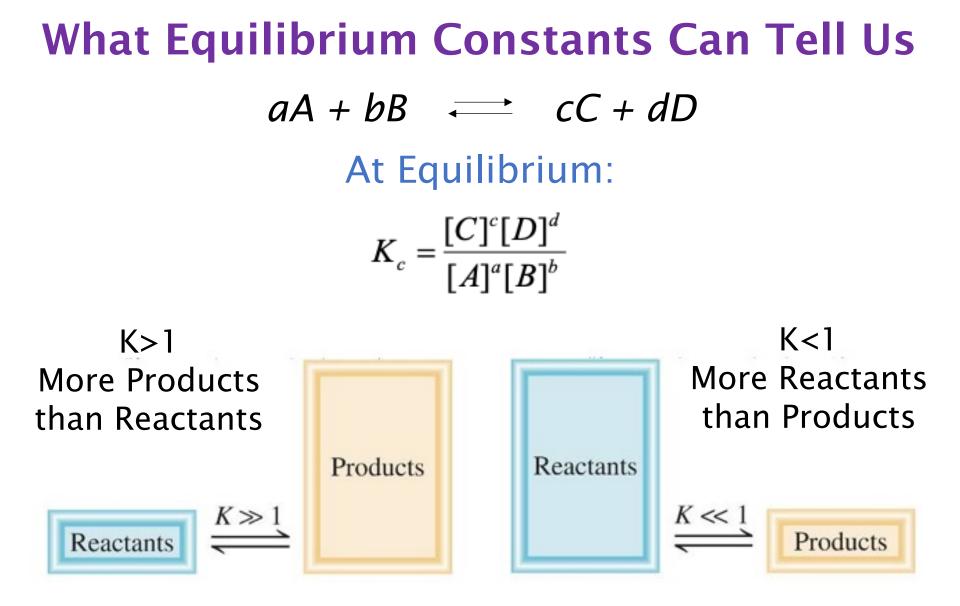
 $\begin{array}{ll} K_p \mbox{ for liquid-vapor equilibrium} = \underline{vapor} \mbox{ pressure of liquid} \\ H_2O(I) \rightleftarrows H_2O(g) & K_p = P_{(H2O)} \mbox{ liquid not included} \end{array}$

To write an appropriate equilibrium expression from a balanced equation, the equation MUST show the phase of each reactant & product.

Determination of K_{eq} values:

- The equilibrium expression comes from the balanced equation
 - $2H_2(g) + O_2(g)$ $\longrightarrow 2H_2O(g)$ $K_{eq} = \frac{[H_2O]^2}{[H_2]_2[O_2]}$
- The value of K is experimentally determined
 - Allow the reaction to run until it reaches equilibrium.
 - Once equilibrium is reached, measure the concentration of all components in the equilibrium expression.
 - Plug the equilibrium concentrations into the equilibrium expression to calculate K_{eq}.

Equilibria Involving Solids & Liquids


A mixture of H_2 , S, and H_2S is held in a 1.0L vessel at 90°C and reacts according to the equation:

$H_2(g) + S(s) \longrightarrow H_2S(g)$

An equilibrium mixture contains 0.46g H₂S & 0.40g H₂.
(a) Write the equilibrium constant expression for this reaction.

(b) What is the value of K_c for the reaction at this temp.? A: 0.068

(c) Why can we ignore the amount of S when doing the calculation in part b?

As K goes to infinity, reaction goes to completion. As K goes to zero, no reaction occurs.

Analyzing K_p/K_c Values

For the reaction: $H_2(g) + I_2(g) \implies 2 HI(g)$

 $K_p = 794$ at 298K and $K_p = 54$ at 700K

Is the formation of HI more favored at the higher or lower temperature?

Using the Equilibrium Expression

1. Nitrogen monoxide exists in equilibrium with nitrogen and oxygen gas. At a given temperature, 0.100 moles of NO were added to a 2.00L vessel. At equilibrium, 0.044 moles of NO were remaining. What is the value of K_c ?

1. Write the balanced equation & equilibrium constant expression.

2. Find equilibrium <u>molarities</u> of reactants and products. We are using concentration, so make sure to convert to Molarity!

3. Calculate K_c

A: $K_c = 0.40^{-21}$

Predicting the Direction of a Reaction

 $aA + bB + \dots \iff cC + dD + \dots \qquad K_{eq} = \frac{[C]^c [D]^d}{[A]^a [R]^b}$

If the value of K_{eq} is very large

- [C] & [D] very large or [A] & [B] very small
- Reaction will go to completion
- Equilibrium favors products

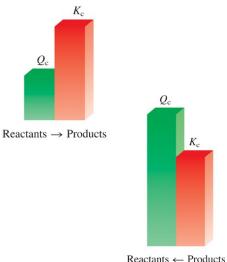
If the value of K_{eq} is very small

- [C] & [D] very small or [A] & [B] very large
- Reaction proceeds very slowly or no reaction (NR) at all
- Equilibrium favors reactants

Note that K_{eq} has its origins in thermodynamics, but kinetics are also important. The value of K_{eq} does not guarantee that a reaction will occur in either direction.

The Reaction Quotient (Q_c or Q_p) $Q_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$ $aA + bB + \dots \Rightarrow cC + dD + \dots$

Essentially K_{eq} but at non-equilibrium conditions

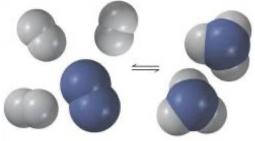

- Indicates direction of reaction to get to equilibrium **Q** < K
- [Products] < equilibrium concentration
- Higher rate in forward direction

Q > K

- [Products] > equilibrium concentration
- Higher rate in reverse direction

$\mathbf{Q} = \mathbf{K}$

- [Products] = equilibrium concentration ٠
- Forward rate = Reverse rate
- No macroscopic changes observed


Equilibrium : no net change

 $Q_{\rm c}$

Reaction Quotient

1. For the reaction of hydrogen with nitrogen to form ammonia at 25°C, $K_c = 4.0 \times 10^8$. The equilibrium concentrations were found to be 1.0×10^{-3} M in both hydrogen & nitrogen and 0.020M in ammonia. If you add 0.010M nitrogen, in which direction does the reaction shift?

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

A: Reaction shifts toward products ²⁴

2. At 1000K, the value of K_p for the following reaction is 0.338.

 $2 SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$

Given the following pressures:

 $P_{SO3} = 0.16$ atm; $P_{SO2} = 0.41$ atm; $P_{02} = 2.5$ atm

(a) Is the system at equilibrium? A: No

(b) If not, predict the direction in which the reaction will shift to reach equilibrium. A: toward reactants

Free Energy & Equilibrium

During a reaction, not all of the reactants and products will be in their standard state. Under any conditions (standard or nonstandard), the free energy change is:

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

 $R = 8.314 \times 10^{-3} \text{ kJ/mol K}$

T = temperature in K

Q = reaction quotient

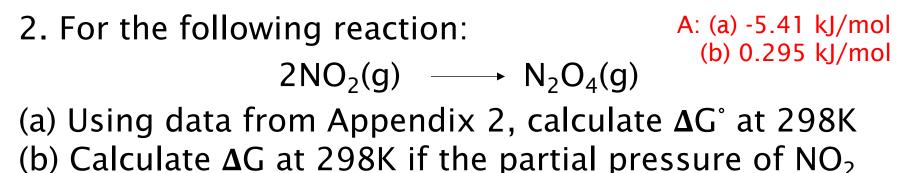
(Under standard conditions, all concentrations are 1M, so Q = 1, InQ = 0, and $\Delta G = \Delta G^{\circ}$)

At equilibrium: $\Delta G = 0$ and Q = K (K is equilibrium constant) So the equation becomes: $0 = \Delta G^{\circ} + RT \ln K$ Therefore, at equilibrium: $\Delta G^{\circ} = -RT \ln K$

Gibbs Free Energy & Equilibrium

K	ln K	ΔG°	Comments
> 1	Positive	Negative	Products are favored over reactants at equilibrium.
= 1	0	0	Products and reactants are equally favored at equilibrium.
< 1	Negative	Positive	Reactants are favored over products at equilibrium.

 $\Delta G^{\circ} < 0$ (negative), the forward reaction is spontaneous


 $\Delta G^{\circ} > 0$ (positive), the reverse reaction is spontaneous

 $\Delta G^{\circ} = 0$ the reaction is at equilibrium

The magnitude of ΔG° indicates how far the standard state is from equilibrium (more negative $\Delta G^{\circ} = \text{larger K}$)

Free Energy & Equilibrium

1. Calculate ΔG° for the following reaction at 25°C. Fe(OH)₂(s) \longleftrightarrow Fe²⁺(aq) + 2OH⁻(aq) K_{sp} for Fe(OH)₂ is 1.6x10⁻¹⁴ A: 79kJ/mol

and N_2O_4 are 0.40atm and 1.60atm, respectively.

Using K_{eq} to Find Equilibrium Concentrations

- 1. Write the properly balanced chemical equation.
 - Need the stoichiometry & species involved in the reaction.
- 2. Set up a table of concentrations for all components.
 - Use coefficients from balanced equation to express all unknown concentrations in terms of a single reactant or product, x.
- 3. Write out the equilibrium constant expression for the reaction (i.e. the equation for K).
- 4. Substitute the values from step 2 into the K_{eq} equation.
- 5. Solve the equation for x.
- 6. Substitute the value you calculated for x into the expressions for the other equilibrium concentrations.

"Ice Tables" will be used in most of the remaining chapters!

Using K_{eq} to Find Equilibrium Concentrations

1. The decomposition of BrCl to bromine & chlorine has a K_c of 0.14 at 350K. If the initial concentration of BrCl is 0.062M, what are the equilibrium concentrations of all components?

- 1. Balanced Equation:
- 2. ICE Table

3. K_{eq} Expression

6. Use x to determine conc.

4 & 5. Substitute values from table & Solve for x

2. Carbon monoxide reacts with water at 1000°C to give carbon dioxide and hydrogen with $K_c = 0.58$. A reaction was started with the following composition: CO₂ 0.20M; H₂ 1.20M; H₂O 0.50M; CO 1.00M. What are the equilibrium concentrations of all components?

- 1. Balanced Equation:
- 2. ICE Table

- 3. K_{eq} Expression
- 4. Substitute values from table

Need quadratic equation!

5. Solve for x using quadratic equation: $-b\pm\sqrt{b^2-4ac}$ 2a

6. Use x to determine concentrations

3. Compare the molar solubility of lead chloride ([Pb²⁺]) at 25°C and 90°C. From Table:

 $\begin{array}{cccc} \text{PbCl}_{2}(s) & \longrightarrow & \text{Pb}^{2+}(aq) + 2\text{Cl}^{-}(aq) & \begin{array}{cccc} \Delta H^{\circ}_{f}(kJ/mol) & S^{\circ}(J/molK) \\ \text{PbCl}_{2}(s) = -359 & \text{PbCl}_{2}(s) = 136 \\ \text{Pb}^{2+}(aq) = -1.7 & \text{Pb}^{2+}(aq) = 10.5 \\ \text{Cl}^{-}(aq) = -167.2 & \text{Cl}^{-}(aq) = 56.5 \end{array}$

Molar solubility = amt. moles dissolved = equilibrium concentration!

A: solubility at 90°C about double the solubility at 25°C

Making Approximations in Equilibrium Calculations (do we need to use the Quadratic Equation?)

Answer: Only if the percent difference between X and the equilibrium concentration is >5%

Example A:

Find [HClO] for a 0.010M solution of hypochlorous acid (HClO) at 25°C. HClO(aq) + H₂O(l) \longrightarrow H₃O⁺(aq) + ClO⁻(aq) where $K_a = 2.9 \times 10^{-8}$.

	HCIO	H ₃ O⁺	ClO⁻
Ι	0.010	0	0
С	-X	+X	+X
E	0.010-X	Х	Х

 $K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$ $2.9 \times 10^{-8} = \frac{[X][X]}{[0.010 - X]} \qquad \text{Ignore this } X$ $[HCIO] = 0.010 - 0.000017 \sim 0.010$

 $X^2 = 2.9 \times 10^{-10}$ X = 0.000017

 $2.9 \times 10^{-8} = \frac{X^2}{0.010}$

Making Approximations in Equilibrium Calculations (do we need to use the Quadratic Equation?)

Answer: Only if the percent difference between X and the equilibrium concentration is >5%

Example B:

Find [HNO₂] for a 0.010M solution of nitrous acid (HNO₂) at 25°C. HNO₂(aq) + H₂O(I) \rightleftharpoons H₃O⁺(aq) + NO₂⁻(aq) where $K_a = 4.5 \times 10^{-4}$.

	HNO ₂	H ₃ O⁺	NO ₂ -
Ι	0.010	0	0
С	-X	+X	+X
E	0.010-X	Х	Х

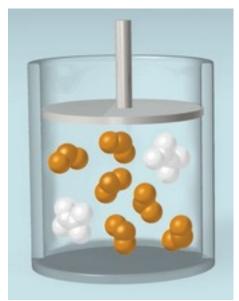
 $K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$ $4.5 \times 10^{-4} = \frac{[X][X]}{[0.010 - X]} \qquad \text{lgnore this X}$ $[HNO_{2}] = 0.010 - 0.0021 \sim 0.008$ (0.0021/0.008)*100 = 26%Approximation <u>NOT</u> acceptable

 $X^2 = 4.5 \times 10^{-6}$ X = 0.0021

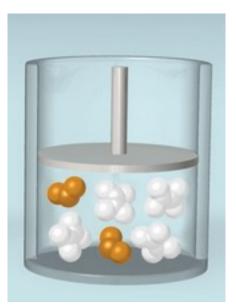
 $4.5 \times 10^{-4} = \frac{X^2}{0.010}$

Hydrofluoric acid dissociates in water to yield hydronium ions and fluoride ions according to the equation:

HF (aq) + H₂O (I) \longrightarrow H₃O⁺ (aq) + F⁻ (aq) The K_{eq} for this process is 7.1x10⁻⁴. If you start with a 1.2M solution of HF, what are the equilibrium concentrations for all components?

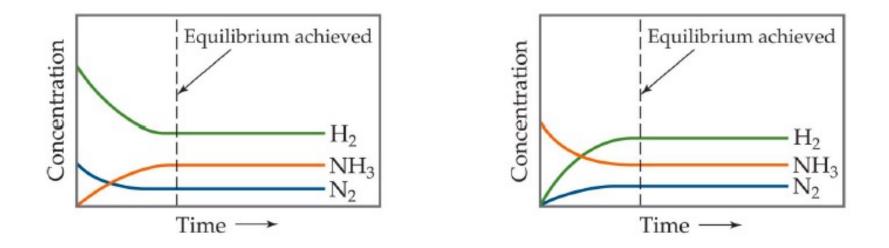

- 1. Balanced Equation:
- 2. ICE Table

3. K_{eq} Expression

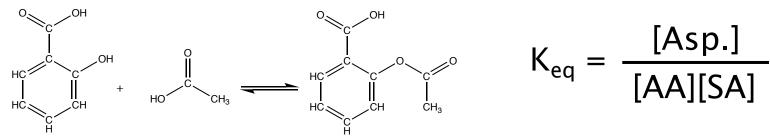

4. Substitute values from table

Factors that Affect Chemical Equilibrium: Le Châtelier's Principle

When stress is applied to a system at equilibrium, the system will shift to reduce the applied stress and re-establish equilibrium


 $2NO_2(g) \rightleftharpoons 1N_2O_{4(g)}$

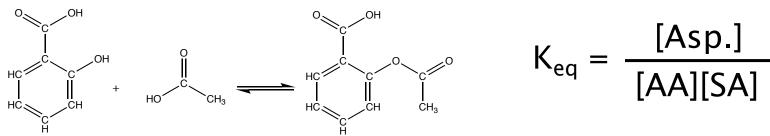
Addition of pressure causes the reaction to shift towards products – fewer moles of gas decreases the pressure (i.e. the stress)


Remember: Equilibrium Can Be Reached From Either Direction

 $N_2(g) + 3H_2(g) \implies 2NH_3(g)$

It doesn't matter whether you start with N₂ and H₂ or with NH₃ – you will have the same proportions of all three substances at equilibrium Many different types of stress can affect equilibrium, such as:

> Change in components Change in concentrations Change in partial pressure Change in external pressure Change in total volume Change in temperature

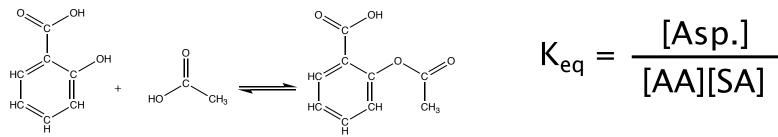


Synthesis of Aspirin from Salicylic Acid & Acetic Acid is an equilibrium process. We want to make as much aspirin as possible.

Addition of a component: Add Acetic Acid

 $K_{eq} \text{ must} \longrightarrow K_{eq} = \frac{[Asp.]}{[AA][SA]}$ constant
If we add more AA, the
denominator gets larger

To keep K_{eq} constant, we need to increase the numerator – reaction will shift toward the products (make more aspirin).



Synthesis of Aspirin from Salicylic Acid & Acetic Acid is an equilibrium process. We want to make as much aspirin as possible.

Decrease in conc. of a component: Remove Aspirin

 $K_{eq} \text{ must} \longrightarrow K_{eq} = \underbrace{[Asp.]}_{[AA][SA]}$ remain
constant
If we remove aspirin, the
numerator gets smaller

To keep K_{eq} constant, we need to decrease the denominator – reaction will shift toward the products (use up AA & SA, & make more aspirin).

Synthesis of Aspirin from Salicylic Acid & Acetic Acid is an equilibrium process. We want to make as much aspirin as possible.

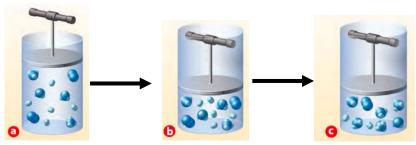
What if we added aspirin?

 $K_{eq} \text{ must} \longrightarrow K_{eq} = \underbrace{[Asp.]}_{[AA][SA]}$ remain
constant
If we add aspirin, the
numerator gets larger

To keep K_{eq} constant, we need to increase the denominator – reaction will shift toward the reactants (make more AA & SA).

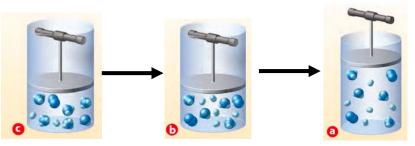
For the following reaction,

 $2NO(g) + O_2(g) \implies 2NO_2(g)$


what happens to the equilibrium if:

(a) O₂ is added to the system?

(b) NO is removed?


Changing Volume or External Pressure $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

When pressure is increased: Equilibrium shifts to produce smaller # moles of gas

Toward products – 2 moles < 4 moles

When Pressure is decreased: Equilibrium shifts to produce larger # moles of gas

Toward reactants – 4 moles > 2 moles

If a reaction has the same number of moles of gas on both sides (e.g. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$): Changes in external pressure do not affect equilibrium

Changing Volume or External Pressure

For the following reaction,

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

what happens to the equilibrium if:(a) The volume of the system is increased?

(b) The external pressure exerted on the system is increased?

Changing Temperature

Exothermic Reaction:

Heat is released
→ heat is a product
Increase T: K decreases
→ favors reactants
Decrease T: K increases
→ favors products

Endothermic Reaction: Heat is absorbed → heat is a reactant Increase T: K increases → favors products Decrease T: K decreases → favors reactants

 $2 \text{ NO}_2(g) \rightleftharpoons N_2O_4(g)$ red clear Exothermic Reaction $\Delta H = -58 \text{kJ/mol}$

High T: More NO₂ Low T: More N₂O₄

Adding a Catalyst or Inhibitor

Catalysts:

- Catalysts lower activation energy.
- Cause a reaction to reach equilibrium faster
- DO NOT AFFECT THE EQUILIBRIUM ITSELF

Inhibitors

- Act to slow the rate of a reaction
- Prevent equilibrium from being reached as quickly
- DO NOT AFFECT THE EQUILIBRIUM ITSELF
- It may seem like the reaction is not occurring at all, but in reality it is just infinitely slow.

Which way does the reaction shift if..... $N_2O_3(g) \rightleftharpoons NO(g) + NO_2(g) \quad \Delta H = +39.7 \text{kJ/mol}$

NO is added?

Volume of reaction vessel is reduced?

The total internal pressure is increased by adding He gas?

The temperature is increased?

A catalyst is added?

How does each of the following changes affect the yield of NO at equilibrium?

 $4NH_3(g) + 5O_2(g) \stackrel{\longrightarrow}{\longrightarrow} 4NO(g) + 6H_2O(g)$ $\Delta H = -904.4 \text{ kJ/mol}$

Increase [NH₃]

Increase [H₂O]

Decrease [O₂]

Decrease the volume of the container

Add a catalyst

Increase temperature