
Chapter 8

Chemical Reactions

Chemical Equations

Chemical Equations

- Shorthand description of a chemical reaction
 - Like a recipe!

- Symbols & formulas = elements & compounds
- Letters in parentheses = phases of matter

$$H_2(g) + 2C(s) + Cl_2(g) \rightarrow C_2H_2Cl_2(g)$$

Chemical Equations

$$H_2(g) + 2C(s) + Cl_2(g) \rightarrow C_2H_2Cl_2(g)$$

Reactants: Starting substances on left: H₂, C, Cl₂ Products: Substances formed on right: C₂H₂Cl₂

Values in front of symbols: Stoichiometric coefficients
Coefficients = # moles of that substance
→ If there is no #, the coefficient is 1

+ sign: Think of it as "and"; not mathematical adding!

Arrow (produces, yields) – change from reactants to products \rightarrow Shows the direction of reaction (\rightarrow , \leftarrow , \leftrightarrow , \Longrightarrow)

(g), (s), (l), (aq): chemical phase: gas, solid, liquid, aqueous

Aqueous = dissolved in water

Remember naming......

One mole of solid barium hydroxide reacts with two moles of aqueous nitric acid (HNO₃) to form one mole of aqueous barium nitrate and two moles of liquid water.

Law of Conservation of Mass

Total mass is constant during a chemical reaction Mass of reactants must exactly match mass of products

2lbs potatoes + 3 ounces milk + 1 ounce butter = 2 lbs 4 oz mashed potatoes

Called mass balance

11.1g $H_2(g) + 88.9g O_2(g) = 100.0g H_2O(l)$

Matter cannot be created or destroyed in chemical reactions!

Chemical Equations must be balanced!

Rules & Hints For Balancing Chemical Equations Cannot make something out of nothing!

- ONLY COEFFICIENTS CAN BE CHANGED!!! H₂O ≠ H₂O₂
- If an element(s) is present in just 1 compound on each side of the equation, balance that element(s) first.
- Balance <u>free</u> elements <u>last</u>. (O₂, C, H₂, etc.)
- Fractions can be cleared at any time by multiplying all coefficients by a common multiplier (often denominator)

$$2 [C_4H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2O] \rightarrow 2 C_4H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2O$$

 Groupings of atoms (such as in polyatomic ions) may remain unchanged. In such cases, you can balance these groupings as a unit.

Balancing Chemical Equations

Starting - Unbalanced (no coefficients):

1.)
$$H_2 + O_2 \rightarrow H_2O$$
 | 2.) $C_2H_5O_2 + O_2 \rightarrow CO_2 + H_2O$

Balanced: 1.)
$$2H_2 + O_2 \rightarrow 2H_2O$$

2.) $4C_2H_5O_2 + 9O_2 \rightarrow 8CO_2 + 10H_2O$

Some Basic Types of Chemical Reactions

Combination (aka Synthesis): Putting things together

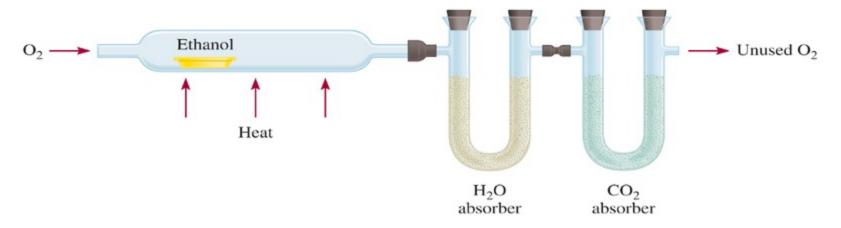
Two or more reactants combine to form a single product

Decomposition: Breaking things apart

Two or more products form from a single reactant

$$\longrightarrow \longrightarrow + \longrightarrow 2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

Combustion: Reacting with oxygen


A substance burns in the presence of oxygen

$$+ \longrightarrow + \longrightarrow + \longrightarrow CH_4(g) + 2O_2(g) \rightarrow 2H_2O(l) + CO_2(g)$$

Combustion Analysis

$$CH_4(g) + 2O_2(g) \rightarrow 2H_2O(I) + CO_2(g)$$

Determination of Empirical Formulas by Elemental Analysis (Combustion)

- Burn measured amount of compound with excess O₂.
 - \circ $C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O + Unused O_2$
- Measure mass of products (must know what they are)
- Use mass of products to determine moles & mass of each element present
 - \circ CO₂ and H₂O contain all C and H atoms
 - Determine amount of oxygen by difference
- If know molar mass can determine molecular formula

A 0.595g sample of a CHO compound burns in O_2 to produce 1.188g CO_2 and 0.486g H_2O . What is the empirical formula?

$$C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O + Unused O_2$$

MM $CO_2 = 44.01 \text{ g/mol}$ MM $H_2O = 18.016 \text{ g/mol}$
Determine Moles & Mass of C from CO_2

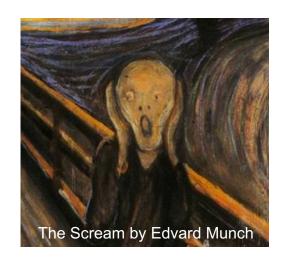
Determine Moles & Mass of H from H₂O

Determine Mass & Moles of O from what is left

Divide by smallest # moles to get formula: C_2H_4O

What If You Don't get Whole Numbers?

Multiply Results from Empirical Formula by the smallest possible value to get whole numbers:


$$C = 1.5 \times 2 = 3$$

$$O = 1 \times 2 = 2$$

$$H = 3 \times 2 = 6$$

Formula = $C_3H_6O_2$

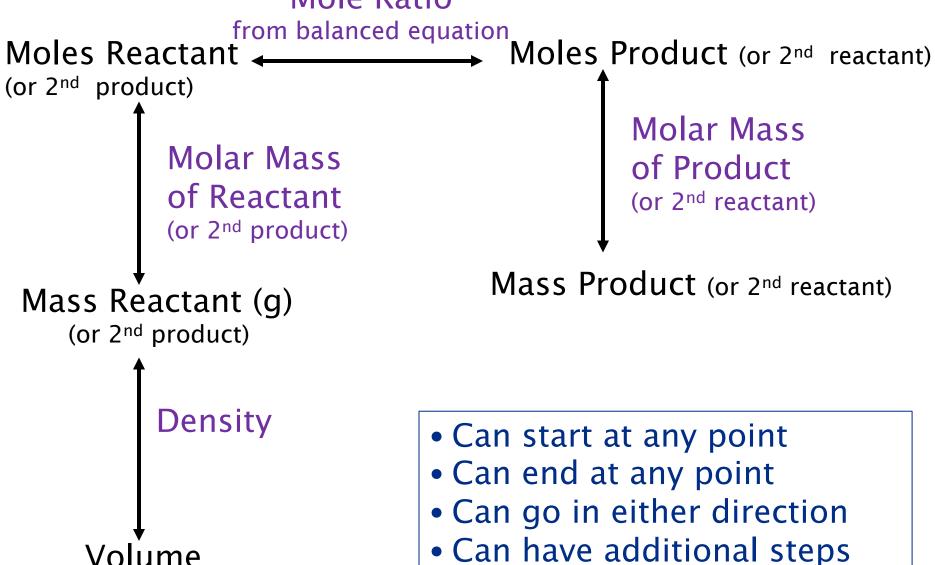
Amounts of Reactants and Products: Stoichiometry

Calculations based on chemical reactions

How much do you need to make what you want?

Stoichiometry: Mole Ratios in Chemical Reactions

3 eggs and 2 cups of flour react to make one cake ratio: 3:2:1

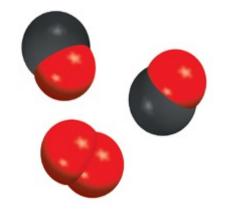

$$2C(s) + 1Cl_2(g) + 2H_2(g) \Rightarrow 1C_2H_4Cl_2(g)$$

2 moles of graphite (carbon), 1 mole of chlorine gas, and 2 moles of hydrogen gas react to form 1 mole of dichloroethane

Mole ratio: 2:1:2:1

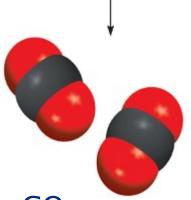
Stoichiometry Flow Chart

Mole Ratio



What is the mass of CO₂ produced when 10.7g of O₂ reacts with CO to form CO₂?

Write and balance the equation:


 $2CO(g) + 1O_2(g) \rightarrow 2CO_2(g)$

Calculate moles of O_2 (31.9988 g/mol) in 10.7g of O_2 . (0.33439mol O_2)

Calculate moles of CO₂ from mole ratio.

(0.668775mol CO₂)

Calculate grams CO_2 (44.0098g/mol) from moles CO_2 . (29.4g CO_2)

Limiting Reagents & Reaction Yield:

- Limiting Reagent: Reactant that runs out first!
 - Determines how much product you can make
 - Find by calculating the moles of 1 product from each given amount of reactant
 - Limiting reagent is the reactant producing the <u>smallest</u> amount of product

Theoretical Yield:

- Max amount of product that you can make
- Based on limiting reagent!
- Generally reported in grams

12	unlimited	
unlimited	12	
12	12	
12	6	

$$Sb_4O_{10} + 6H_2O \rightarrow 4H_3SbO_4$$

If you start with 3.0 moles Sb_4O_{10} and 8.0 moles of water, what is your limiting reagent?

133.886 g/mol

 $AgNO_3$ + HCN \longrightarrow

AgCN +

 HNO_3

If you make silver cyanide, which is used in electroplating, from 20.0 g of silver nitrate and 15.0 g of hydrogen cyanide gas, what is your limiting reagent? What is your theoretical yield of AgCN?

Step 1: Make sure equation is balanced.

Step 2: Moles of reactants - for limiting reagent, need both!

Why might you want to make either silver nitrate or hydrogen cyanide your limiting reagent?

Step 3: Cross the mole bridge. Limiting reagent produces smallest amount of product! (LR = AgNO₃)

Step 4: Use the limiting reagent to determine the mass of AgCN.

(15.8 g)

Yields of Chemical Reactions

Reactions rarely produce maximum product

- a. Impure reactants
- b. Incomplete reaction
- c. All product not fully recovered
- d. Side reactions may occur

Actual yield: Yield recovered during experiment

Theoretical yield: Yield calculated from limiting reagent

2.01588 g/mol 28.0134 g/mol 17.0305 g/mol Step 1: $3 H_2 + N_2 \longrightarrow 2 NH_3$

If you start with 4.00 g of hydrogen gas and 22.00g of nitrogen gas, and make 18.5 g of ammonia, what is your percent yield?

Step 2: Step 3:

Step 4:

Step 5: