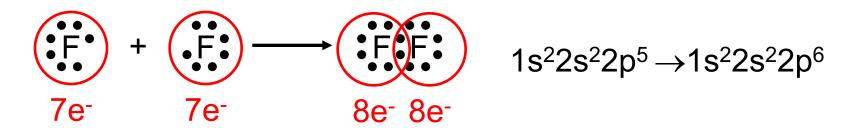
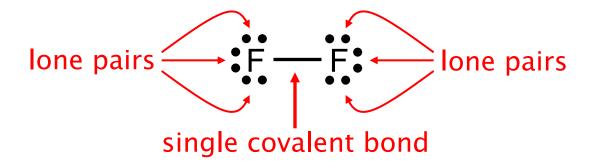

Chapter Six Representing Molecules

Effect of Valence Electrons on Elements


Octet Rule:

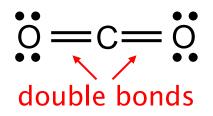
- Elements most stable with 8 valence electrons (2s + 6p)
- Noble gases have 8 valence electrons
 - No e⁻ want to be added or removed
 - Why they are so unreactive
- Main group elements form ions to become <u>isoelectronic</u> with the noble gases
 - Same electron configuration
- He & H follow duet rule
 - 2 e⁻; too small for 8e⁻

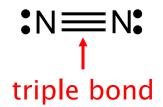

Lewis Structures

Lewis structures represent covalent bond formation

Bonding Pairs: Electrons shared by both atoms - Represented by a dash (-) between bonded atoms

Lone Pairs: Non-shared electrons count for 1 atom - Represented by a pair of dots (••) around atom



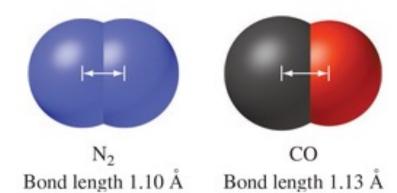

Multiple Bonds

More than one pair of electrons is shared between atoms so each atom can form an octet.

Single Bond:1 shared pair:1 dash(-)Double bonds:2 shared pairs:2 dashes (=)Triple bonds:3 shared pairs:3 dashes (≡)

Allows atoms in a molecule to share extra e⁻ if there are not enough for the central atom

Multiple Bonds


The number of electrons shared impacts the length and strength of a covalent bond

In general:

Single Bond:longestDouble bonds:shorterTriple bonds:shortest

weakest (lowest bond energy) medium strength strongest (highest bond energy)

Bond length is measured as the distance between the nuclei of two bonded atoms

Writing Lewis Structures: Hints & Tips

6

Electronegativity

- Central atom usually has the **lowest** electronegativity (atom lower or to the left in periodic table)
- Terminal atoms (except H) have higher electronegativities

Terminal Atoms

- Bonded to only one other atom
- Hydrogen atoms are terminal atoms
- Halogens (col 17) are often terminal atoms

Oxoacids

• Hydrogen atoms are bonded to oxygen atoms in oxoacids

Hints & Tips for Drawing Lewis Structures Con't

- Final structure must include same number of valance eas sum of valance e- from all atoms in the molecule
- Final structure must satisfy octet rule (unless it is an exception)
- Start with single bonds, try double then triple if necessary
- Hydrogen only wants one more e⁻
 - forms ONE SINGLE BOND
 - will not be between two atoms
- Carbon usually does not have lone pairs
 - all 8 e⁻ must come from single, double, or triple bonds
- Halogens only want one more e⁻
 - generally only form <u>one single bond</u>
- Molecules are often symmetrical
 - try single atom in middle with other atoms around it

Example: Write the Lewis Structure of HNO

- 1. Add up the valence electrons in the structure 1(H) + 5(N) + 6(O) = 12 valence electrons
- 2. Arrange the atoms & place bonding electrons H-N-O nitrogen less electronegative, put in center
- 3. Place e- pairs around terminal atoms to get 8 $H-N-\ddot{O}$:
- 4. Place remaining electron pairs on central atom
- 5. Add double bond to finish nitrogen octet (8)

$$H-N=O$$

Drawing Lewis Structures:

 CH_4 N_2 **CO**₂

Drawing Lewis Structures: Polyatomic ions & simple organic molecules

CO₃²⁻

 C_2H_6

 $C_2H_2I_2$

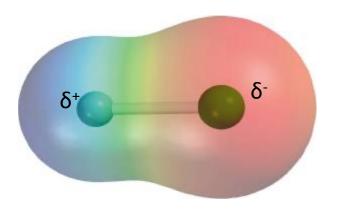
 C_2H_6O

 C_3H_6O

<u>Orgo – degrees of unsaturation</u>: C_nH_{2n+2} – all single bonds C_nH_{2n} – one double bond (or ring) C_nH_{2n-2} – 1 triple bond, 2 double bonds, 2 rings, double bond + ring

10

- 2 for each double bond/ring


- 4 for each triple bond

Electronegativity & Polar Covalent Bonds¹¹

Electronegativity

- The ability of an atom to attract e⁻
- F is the most electronegative atom
- Nonmetals high electronegativities

Polar Covalent Bonds

- Differences in electronegativity result in unequal sharing of electrons between atoms
- More electronegative atom has a partial neg. charge (δ^{-})
- More electropositive atoms has a partial pos. charge (δ^+)

Percent Ionic Character


- Measure of polarity of bond
 - 100% ionic is full transfer of electron, no sharing
 - 100% covalent is equal sharing, H₂, Cl₂, etc.

Electronegativities of Common Elements

Increasing electronegativity

1A																	8A
Н 2.1	2A											3A	4A	5A	6A	7A	
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	0 3.5	F 4.0	
Na 0.9	Mg 1.2	3B	4B	5B	6B	7B	_	-8B-	_	1B	2B	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0	
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 3.0
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe 2.6
Cs 0.7	Ba 0.9	La-Lu 1.0-1.2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2	
Fr 0.7	Ra 0.9																

Electronegativity difference helps determine bond type

Use to make sure that a metal-nonmetal bond is ionic and to determine if a covalent bond is polar or non-polar.

F & Na: 4.0 – 0.9 = 3.1 = ionic C & H: 2.5 – 2.1 = 0.4 = nonpolar covalent

Formal Charge

Difference between the # of valence e⁻ in a free atom & the # of e⁻ assigned to that atom in a Lewis structure.

F.C. = # ve⁻ - (# of lone e- + # bonds)

Get #ve⁻ from group #

Molecule is most stable if formal charge is 0 for each atom.

- Most likely Lewis structure has lowest formal charges
- Negative F.C. must be on more electroneg. atom
- Sum of formal charges:

Molecules = 0 Polyatomic ions = charge Calculating formal chargeF.C. = # ve⁻ - (# of lone e- + # bonds)0000H-N=O $\vdots O-S=O$

Resonance

If a molecule or ion can be represented by 2 or more Lewis structures that differ only in electron location, the true structure is a blend of those structures.

- Electrons are moving around the molecule
- Neither bond is completely single or double (1.5)

$$: \bigcup_{-1} - \bigcup_{+1} = \bigcup_{0} \longleftrightarrow \bigcup_{0} = \bigcup_{+1} - \bigcup_{-1}$$

Resonance Structures

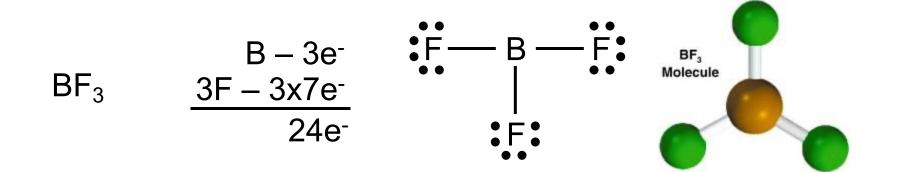
- Equivalent Lewis structures for a single molecule
- Formal charges will usually be present

Delocalization

- Electrons are shared by more than two atoms
- Stabilizes the molecule

Exceptions to the Octet Rule: Incomplete Octet

Not enough electrons for central atom to have 8


$$Be - 2e^{-}$$

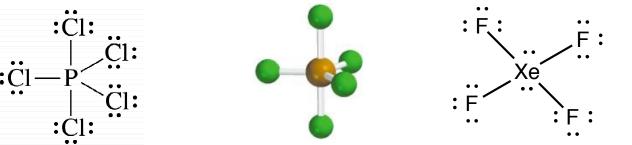
$$BeH_2 \qquad \underline{2H - 2x1e^{-}}$$

$$4e^{-}$$

Terminal atoms unwilling to donate more electrons

- Would destabilize terminal atoms & create formal charge

Free Radicals and Expanded Octets Free Radicals:


- Molecules with an odd number of valence electrons (N)
- Extremely reactive, odd electron wants to be part of a pair

17

Compounds with expanded valence shells

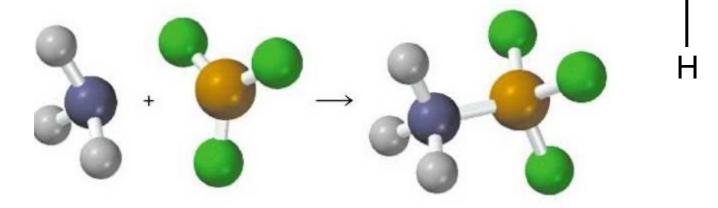
:O-N=O

- Central atom has more than eight electrons
- May have lone pair electrons as well as bonding pairs
- Must be in third row on periodic table or higher (3rd, 4th, 5th, etc.) have empty d orbitals to put electrons in
- Often occurs when expanded octet minimizes formal charge

Drawing Lewis Structures: Exceptions to the Octet Rule

 $XeCl_2$

 H_2SO_4


 \mathbf{PI}_5

BeF₂

18

Coordinate Covalent Bonds

1 atom provides both electrons Electrons are then shared between 2 atoms Ex: BF₃ and NH₃ B needs 2 electrons to fill octet N has a lone pair to share

Seen often with transition metals – can accept electrons into empty d-orbitals