
Chapter Five

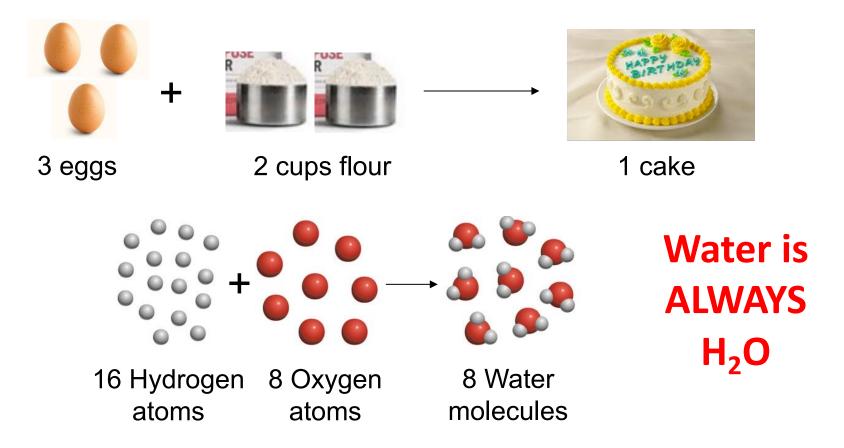
Ionic & Covalent Compounds

Types of Compounds

Compound: 2 or more elements chemically combined

lonic:

- Cation + Anion
- Form from transfer of electrons
- Often metal + nonmetal
 - Elements that are very "different"
 - Opposite sides of Periodic Table
- Ex. NaCl (sodium chloride)
- Contain specific ratios of ions but no specific number of ions


Covalent:

- Form by sharing electrons
- Contain atoms, not ions
- Often nonmetal + nonmetal
 - Elements that are "similar"
 - Same side of Periodic Table
 - Hydrogen is a nonmetal
- Ex. CO₂ (carbon dioxide)
- Molecules contain specific numbers of atoms.

Law of Definite Proportions

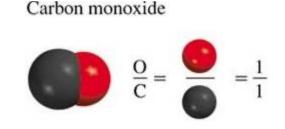
A compound will always have same chemical composition

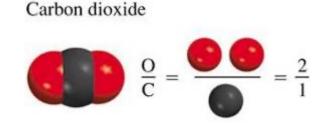
Each product is formed from definite proportions of reactants

Same mass proportions & atomic ratios of elements present

Law of Multiple Proportions

If the same two elements can combine to form more than one compound:


- The masses of one element combine with a fixed mass of the second element.
- The combination is in a ratio of **small whole numbers**.


Open face sandwich 1 bread + 1 filling 1:1 ratio

Regular sandwich 2 bread + 1 filling 2:1 ratio

Compounds are formed when atoms of different elements unite in fixed proportions

Chemical Formulas

Represent chemical composition (atomic ratios)

- **Empirical**: Ratio of atoms (NH₂ instead of N₂H₄)
 - Can use for ionic or covalent compounds
- Molecular: Actual # of atoms (N₂H₄)
 - Only use for covalent compounds. Molecule = covalent
- **Structural**: Shows how atoms are connected in <u>molecules</u>

	Hydrogen	Water	Ammonia	Methane
Molecular formula	H_2	H_2O	NH ₃	$\mathrm{CH_4}$
Structural formula	н—н	н-о-н	H-N-H 	H — C — H
Ball-and-stick model	0-0			

Chemical Formulas

Symbols tell you what elements are present $Fe(CO_3)_2$ Subscripts tell you how many atoms/ions of each element are present

Parentheses show that a subscript belongs to a group of elements, not a single element (distribute the 2 to oxygen & carbon)

Lewis Dot Symbols

Consists of atomic symbol surrounded by 1 dot for each valence electron in the atom

Only used for main group elements # valence electrons = group number

1A	1																8A
٠н	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	He:
·Li	·Be ·											· · · · · · · · · · · · · · · · · · ·	٠ċ٠	·N·	•	:Ë·	:Ne:
·Na	·Mg·	3 3B	4 4B	5 5B	6 6B	7 7B	8	-8B-	10	11 1B	12 2B	·Àl·	· śi ·	٠Ë٠	·š·	:ċi·	:Ār:
٠к	·Ca·											·Ga·	·Ge·	·As·	· Se ·	:Br·	:Kr:
·Rb	·Sr·											·in·	·Sn·	·Šb·	·Ťe·	:ï•	:xe:
• Cs	·Ba ·											·iı·	·Pb·	· Bi ·	·Po·	:At·	:Řn:
• Fr	·Ra·																

Drawing Lewis Dot Symbols

Mg

CI Ar

Formulas & Names of lonic Compounds

Sodium chloride

Ionic Bonding

Electrons are transferred from one atom to another forming charged atoms called ions

- Metal atoms: Lose electrons to form positive cations
- Nonmetal atoms: Gain electrons to form negative anions

Electrostatic force (+ & - attraction) bonds ions into an ionic compound (ionic bond)

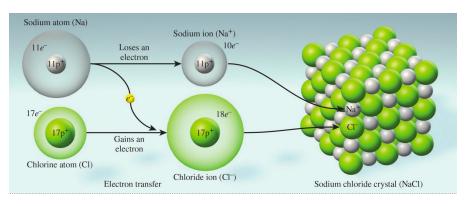
• Form an ionic salt with repeating structure: NaCl, LiF

Ionic Bonds follow the octet rule

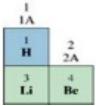
- Atoms lose or gain valence e- to make an octet (8e-)
- 8 valence e- = Noble gas configuration

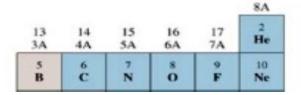
Li
$$\longrightarrow$$
 Li⁺ + e⁻ $1s^22s^1 \rightarrow 1s^2$
e⁻ + F⁻ \longrightarrow F⁻ $1s^22s^22p^5 \rightarrow 1s^22s^22p^6$
Li⁺ + F⁻ \longrightarrow Li⁺ F⁻

Ionic Compounds (salts)


Cations & Anions bind together to form crystals

The net charge on the compound is 0


- Positive & negative charges are balanced: number of positive charges = number of negative charges
- Not always a 1:1 ratio of ions depends on charge

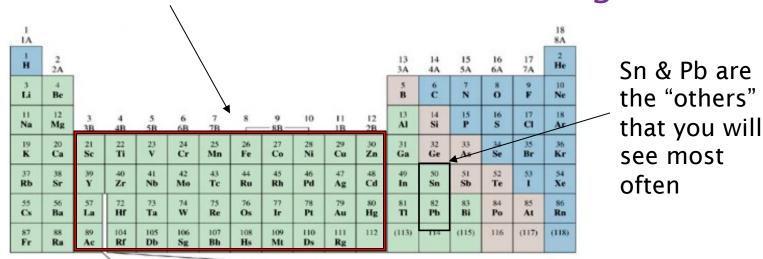

Large network of ions

- Not distinct individual units
- Positive charge of cation attracts all nearby anions
- Negative charge of anion attracts all nearby cations
- Energy required to convert an ionic solid into ions in the gas phase is known as lattice energy

Using the Periodic Table to Predict Ionic Charge (Main Group Elements Only)

Goal: Get 8 valence electrons ("full")

- electrons in "outermost" energy level
- "A" column number tells number of valence electrons
- Noble gases (column 8A/18) already have 8 generally no charge
- Can gain or lose electrons to get 8 generally do what is easier
- Electrons are negative → gain electrons = negative charge!


The correct charge is <u>usually</u> the smallest number

Left Side (metals): K^{1+} or K^{-7} Mg^{2+} or Mg^{6-}

Right Side (nonmetals): O^{6+} or O^{2-} F^{7+} , or F^{1-}

Ionic Bonding: Ca & Cl

Charges on Transition & Other Multi-charge Metals¹⁴

- Become cations
- Charge cannot always be predicted by column
- Often have more than one charge (also possible for some main group elements)
 - Designated with a Roman Numeral
 - Iron (III) = Fe^{3+} ; Iron (II) = Fe^{2+}
 - Roman numerals required in names of ionic compounds if cation can have more than one charge
 - Iron (III) oxide
 - Copper (II) chloride

Polyatomic Ions

- Charged molecules
- Lose or gain electrons as a group
- Charge is spread over 2 or more atoms

Memorize the following polyatomic ions!

11 - d. - - 1 - - - 1 - - - 1

A --- - - - ! - - - - -

Ammonium	NH_4^+	Hydronium	H_3O^+
Phosphate	PO ₄ ³⁻	Acetate	CH ₃ COO ⁻
Hydroxide	OH-	Nitrate	NO_3^-
Cyanide	CN-	Sulfate	SO ₄ ²⁻
Permanganate	MnO_4^-	Chlorate	ClO ₃ -
Carbonate	CO ₃ ²⁻	Perchlorate	ClO ₄ -

Formula of an Ionic Compound must give an overall charge of zero!

Al & O

Ca & Br

Na & CO₃

Ca & NO₃

Pb⁴⁺ & O

Names of Ions and Ionic Compounds

Naming Ions:

For cations: add the word ION after element name

- Na = sodium
 - In col 1, so loses 1 e
 - Na⁺ =

AI = aluminum

- In col 13, so loses 3 e
- $A^{3+} =$

For anions: change the element name ending to -ide first

CI = chlorine

- In col 17, so gains 1e⁻
- C| =

O = oxygen

- In col 16, so gains 2 e
- O² =

Naming Ionic Compounds (ie salts):

- · Write the name of the cation followed by the name of the anion.
- If the cation can have more than one charge, include a Roman Numeral representing the charge after the name of the cation.

Na & Cl

Name =

Net Charge: (+1) + (-1) = 0Chemical Formula is NaCl

Na = sodium Cl = chloride **AI & O**

Net Charge: 2(+3) + 3(-2) = 0Chemical Formula is Al_2O_3

Al = aluminum O = oxide

Name =

Fe & S

Fe = iron -> 2 possible charges, +2 & +3 S = Sulfide -> charge is -2

If Iron is +2

Net Charge: (+2)+(-2) = 0

Chemical Formula is FeS

Name =

If Iron is +3

Net Charge: 2(+3)+3(-2) = 0

Chemical Formula is Fe₂S₃

Name =

Naming Ionic Compounds

Column 1 & Column 2 elements & Aluminum only have one possible charge.

1.) K₂O

4.) $Ca(NO_3)_2$

2.) CaF₂

5.) K₃PO₄

3.) KF

If the formula contains a cation that can have more than one charge, you need to determine the charge based on the anion & include it as a Roman Numeral.

- 6.) PbCl₂
- 7.) Fe_2O_3

Note: In the majority of compounds Ag, Zn, & Cd are Ag⁺, Zn²⁺, & Cd²⁺ but you will not need to memorize them for an exam.

Formulas & Names of Covalent Compounds

 CO_2 = Carbon Dioxide

Covalent Bonding

Electrons are shared between atoms, forming a covalent bond

- Elements are similar so they are not able to fully pull electrons away from each other
- Atoms remain uncharged, but "gain" additional valence electrons to have an octet
- Number of shared electrons can vary depending on the number needed for each atom to gain an octet

Often results in formation of individual units called molecules

 Sometimes large networks similar to ionic crystals can be formed – diamonds are one example

Molecular Compounds

Molecules contain specific numbers of atoms

- The number and type of each atom is shown in the molecular formula
- Diatomic molecules 2 atoms
 - Homonuclear same element not a compound (just an element)
 - Heteronuclear different elements a compound

Polyatomic molecules – more than 2 atoms

Names of Binary Molecules (2 Elements, Covalent)

Names and formulas have 2 parts, 1 for each element:

```
Dinitrogen tetroxide ----- N<sub>2</sub>O<sub>4</sub>
```

1st word is 1st element name ----- N = Nitrogen

2nd word is 2nd element name

 \rightarrow change ending to "-ide" ----- O = Oxygen \rightarrow Oxide

Formula: Subscripts = # of atoms ----- N_2O_4

Name: Prefix = # of atoms ----- Dinitrogen tetroxide

Do not include a prefix for the <u>first element</u> if there is only one atom

Ex: CO_2 = Carbon dioxide (not monocarbon dioxide) CO = Carbon monoxide

Need to know prefixes up to 10

TABLE 5.5	Greek Prefixes						
Prefix	Meaning	Prefix	Meaning				
Mono-	1	Hexa-	6				
Di-	2	Hepta-	7				
Tri-	3	Octa-	8				
Tetra-	4	Nona-	9				
Penta-	5	Deca-	10				

Note that the o or a at the end of the prefix is often dropped when the element begins with a vowel.

- Monoxide, not monooxide
- Tetroxide, not tetraoxide

Names & Formulas of Binary Molecules

1.) N₂O

2.) SCI₃

3.) P₂O₅

4.) nitrogen dioxide

5.) dinitrogen tetrasulfide

Acids and Bases

Acid

- Arrhenius: Compound ionizes in H₂O to form H⁺ & anions
 - Name by changing anion -ide ending to -ic acid
 - Add hydro to acids with HX formula (X=halogen; col.17)
 ex: HCl = <u>Hydro</u>chloric acid
- Bronsted acids: H⁺ grabs H₂O to form H₃O⁺ in water

Base

- Arrhenius: Compound ionizes in H₂O to form OH⁻ & cations
 - Name as salts: All hydroxide salts are considered bases
- Bronsted base: Pulls H+ from H_2O so NH_3 is a base: $H_2O + NH_3 \Rightarrow OH^- + NH_4^+ \Rightarrow NH_4OH$

Neutralization

Reaction between acid & base – form water & a salt
 H⁺ + OH⁻ ⇒H₂O and cation + anion ⇒ salt
 HCl + NaOH ⇒H₂O + NaCl (aq)

Common acids and bases

Be able to recognize & associate formula with name

Acids

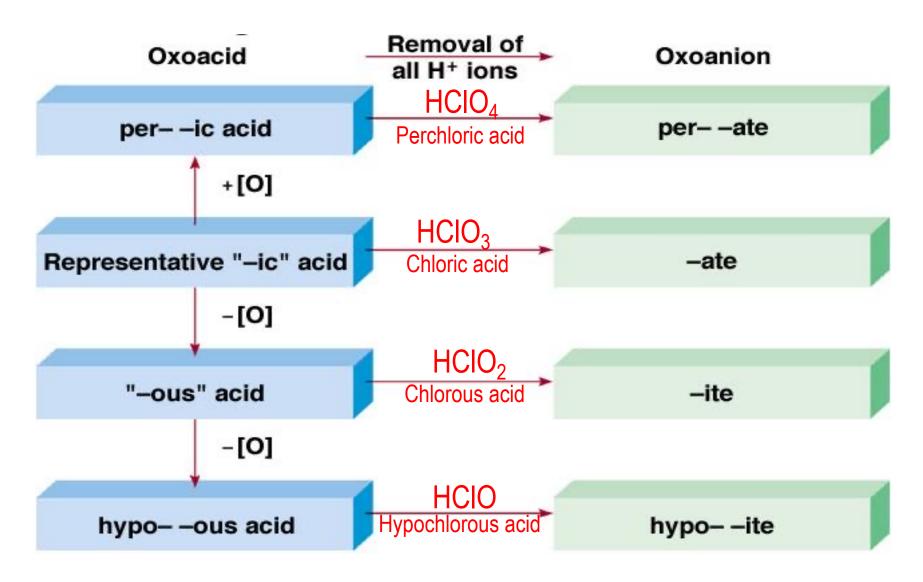
Hydrochloric Acid: HCl Carbonic Acid: H_2CO_3

Sulfuric Acid: H₂SO₄ Nitric Acid: HNO₃

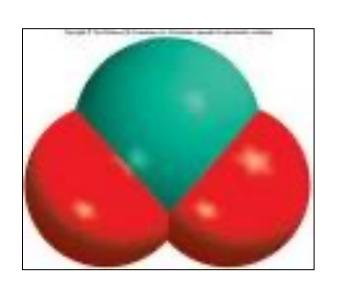
Chloric Acid: HClO₃ Phosphoric Acid: H₃PO₄

Perchloric acid: HClO₄ Acetic Acid: CH₃COOH

Bases


Sodium hydroxide: NaOH

Potassium hydroxide: KOH


Ammonium hydroxide: NH₄OH (ammonia, NH₃, in H₂O)

Lithium hydroxide: LiOH

Naming Oxoacids and their Anions: <u>Reference Only</u>

Molar Mass & Mass Percent Calculations

SO₂: 64.0648g/mol

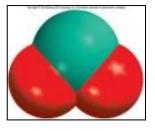
49.9476% oxygen 50.0524% sulfur

Molar Mass

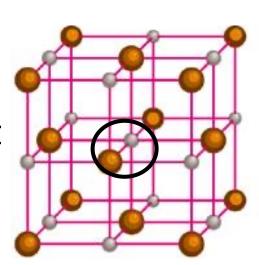
The mass of one mole of a substance

Units of g/mol

To calculate for a compound:


- Find atomic mass of each element
 - → located on Periodic table (often below symbol)
- Multiply atomic mass of element by subscript, then add all elements together.
- Molecular mass: mass of molecule
 - → include every atom
- Formula mass: mass of ions in a salt
 - → use smallest ratio

Examples:


1 mol Na = 22.99 g/mol

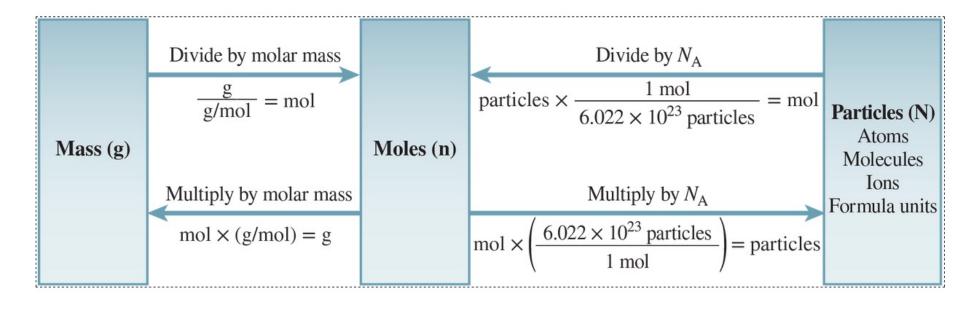
 $1 \text{ mol } SO_2 = 64.07 \text{g/mol}$

1 mole NaCl = 58.44g/mol

SO₂ - molecule

NaCl - ionic compound

Calculating Molar Mass for Compounds


1.) NaCl

2.) SO₂

3.) $Pb(NO_3)_2$

Mole-based Calculations (Mass/Mole/Particle Conversions)

Molar Mass (*M*): grams/mol – from Periodic Table! Avogadro's Number N_a: 6.022x10²³ particles/mol

Same as for elements, but with molar mass of **compounds**

moles \rightarrow mass What is the mass, in grams, of 0.557 mol K₂O? (52.5 g)

mass \rightarrow # moles How many moles are there in 25.64 g of K₂O? (0.2722 mol) # moles \rightarrow # particles How many molecules are in 2.6 moles of CO₂? (1.6 x 10²⁴ molecules)

moles \rightarrow # particles How many oxygen atoms are in 4.57 moles of SO₃? (8.26x10²⁴ atoms O)

moles \rightarrow # particles How many ions are in 2.6 moles of NaCl? (3.1 x 10²⁴ ions; 1.6x10²⁴ Na⁺ ions & 1.6x10²⁴ Cl⁻ ions)

Combined!

How many atoms are there in 2.578 g of SO_2 (MM = 64.065 g/mol)? Mass \rightarrow Moles \rightarrow Molecules \rightarrow Atoms

Percent Composition of Compounds by Mass (Mass % Compostion)

- General idea for percentages is "part / total"
- For mass %: mass of each element in the compound divided by the total mass of the compound
- Units should be the same for both values (usually g)

To Determine the Mass % of a Compound:

- Assume 1 mole of compound.
 - This will make subscripts = # moles of each element
- Calculate molar mass of compound.
- Calculate mass of each element based on subscripts.
- For each element, divide mass by molar mass of compound

Mass % Compostion

3 pieces Pepperoni (Pe) – 10. g per piece 2 pieces Cheese (Ch) – 9.0 g per piece 5 pieces Veggie (Ve) – 12 g per piece

Pe₃Ch₂Ve₅

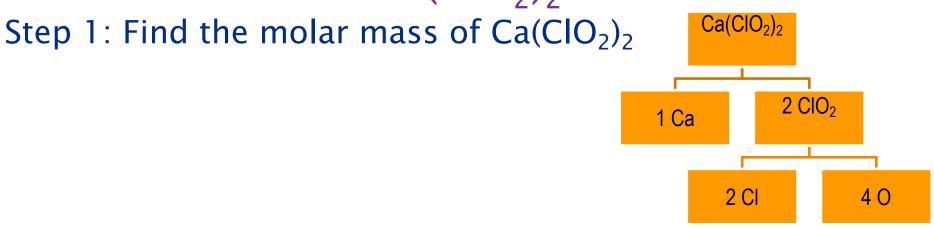
Total: 10 slices, 108 g

Percent by slice:

Pe: (3/10)*100 = 30%

Ch: (2/10)*100 = 20%

Ve: (5/10)*100 = 50%


Percent by mass:

Pe: (30./108)*100 = 27%

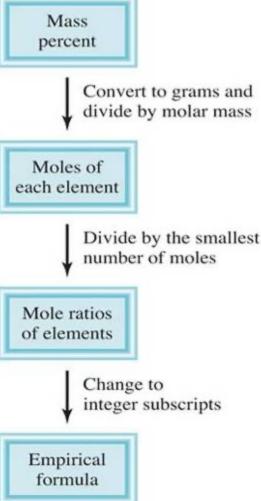
Ch: (18/108)*100 = 17%

Ve: (60./108)*100 = 56%

Mass % Composition of Calcium Chlorite, $Ca(CIO_2)_2$

Step 2: Divide each elemental mass by the molar mass of $Ca(CIO_2)_2$ (Total should equal approximately 100%)

Empirical Formulas from Mass % Composition


What is the empirical formula for a compound with a mass composition of 2.2% H, 26.7% C, and 71.1% O?

Assume 100g, then can change % of each element to grams:

Convert grams of each element to mole:

Divide by smallest # of moles

Use integers for subscripts $H_1C_1O_2 = HCO_2$ (empirical formula)

What If You Don't get Whole Numbers?

Multiply Results from Empirical Formula by the smallest possible value to get whole numbers:

$$C = 1.5$$

$$0 = 1$$

$$H = 3$$

Formula = $C_3H_6O_2$

Molecular Formula from Mass % Composition

What is the molecular formula for a compound with a mass composition of 2.2% H, 26.7% C, and 71.1% O, and a molar mass of 135.053g/mol?

Follow steps to get empirical formula:

From previous slide: HCO₂

Calculate formula mass from empirical formula:

Divide molar mass by formula mass:

Multiply subscripts by value from previous step: