Chapter Thirteen Physical Properties Of Solutions

Review: Solution Terms & Types

Solvent: Solute: Solution:

Larger portion of a solution Smaller portion of a solution A homogeneous mixture of two or more elements or compounds

Solubility:

ty: Measure of max amount of solute in solution

TABLE 13.1 Types of Solutions							
Solute	Solvent	State of Resulting Solution	Example				
Gas	Gas	Gas*	Air				
Gas	Liquid	Liquid	Carbonated water				
Gas	Solid	Solid	H_2 gas in palladium				
Liquid	Liquid	Liquid	Ethanol in water				
Liquid	Solid	Solid	Mercury in silver				
Solid	Liquid	Liquid	Saltwater				
Solid	Solid	Solid	Brass (Cu/Zn)				

More Solubility Terms Saturated solution:

Maximum amount of solute that stays in solution - Any additional solute will precipitate

Unsaturated solution:

Contains less solute than in saturated solution

Supersaturated solution:

Contains more solute than in saturated solution

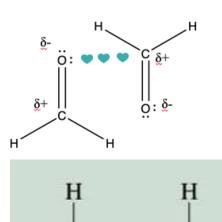
Extremely unstable (easy to make extra precipitate)

Crystallization:

Extra solute in supersaturated solution precipitates & forms crystals

Precipitation:

Solid comes out of solution, not always a crystal



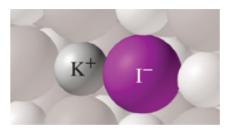
Intermolecular Attractive Forces Review

Polar molecules interact using:

- Dipole-dipole interactions attraction between permanent partial charges
- Hydrogen bonding dipole-dipole attraction involving H bonded to O, N, or F

H

Nonpolar molecules interact using:


Dispersion forces

lons interact using:

• The attraction between their positive and negative charges

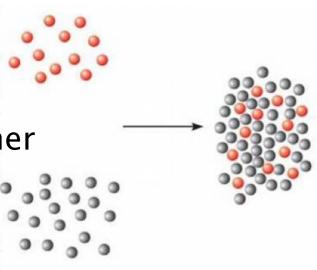
H-N

Intermolecular Attractive Forces Review

In solutions, other important intermolecular forces include:

 Ion-dipole attractions: between an ion and the permanent dipole on a molecule

- Dipole-induced dipole attractions: a permanent dipole causes a temporary dipole in a nonpolar molecule or atom
- Ion-induced dipole attractions: the charge on an ion causes a temporary dipole in a nonpolar molecule or atom


Solvent/Solute Intermolecular Forces & Solubility

Rule of thumb is that "like dissolves like."

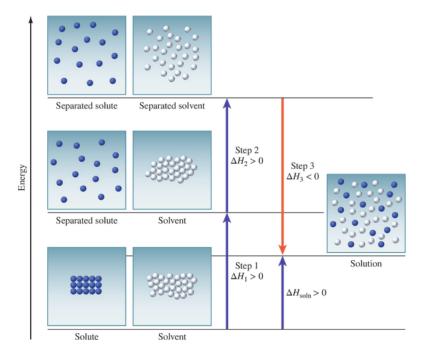
- Intermolecular forces are strongest for similar compounds
- Polar solvent/polar solute
- Nonpolar solvent/nonpolar solute
- Similar attractive forces lead to solvent and solute that are "miscible"
- **miscible** = fully dissolve in one another
 - resulting solution is stable

Examples:

- water/ethanol solutions
- Dissolution of ionic salts in H_2O
- CCI_4 in benzene (C_6H_6)

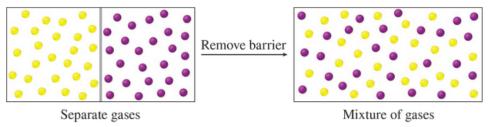
Energy & Entropy in Solution Formation

In order for something to dissolve:


- Solvent particles must separate (ΔH_1 , endothermic)
- Solute particles must separate (ΔH_2 , endothermic)
- Solute & solvent particles must mix (ΔH_3 , generally exothermic)
- Overall process is $\Delta H_{solvation} =$

$$\Delta H_1 + \Delta H_2 + \Delta H_3$$

• Hess's Law!


Energy required to separate < Energy released by mixing = Exothermic Process

Energy required to separate > Energy released by mixing = Endothermic Process

Energy & Entropy in Solution Formation

- If overall process of dissolving is exothermic, resulting system (solution) has <u>lower</u> energy
- The process is favored by enthalpy
- If overall process of dissolving is endothermic, resulting system (solution) has <u>higher</u> energy
- The process is NOT favored by enthalpy
- The material is able to dissolve because the process is favored by ENTROPY
- The **ENTROPY** of a system is a measure of how dispersed or spread out its energy is
- A measure of the DISORDER of a system
- Greater disorder = greater entropy
- Explains why gases mix spontaneously

The natural tendency is for entropy to increase

Concentration Units Review

Molarity (M) =	Moles Solute	mol
	Liters of solution	L
Molality (m) =	Moles Solute	mol

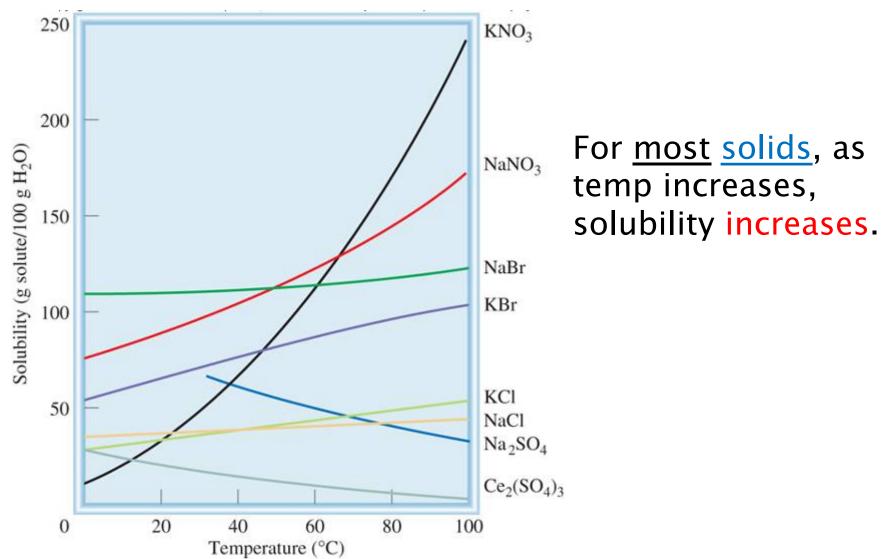
Molarity is temperature dependent, Molality is NOT temperature dependent

Percent by mass = $\frac{\text{Mass solute (g)}}{\text{Mass of solution (g)}} \times 100$

Grams cancel so no units, just % sign

 $ppm = part per million (1g/1x10^{6}g)$

How many grams of sodium hydroxide are present in ¹⁰ 0.500 kg of water if the solution concentration is 0.500 m?


A: 10.0 g

What mass of sodium hydroxide would be needed to make a 0.300 m solution with 4.00L of water at 20°C? (density of water is 0.998 g/mL at 20°C) 11

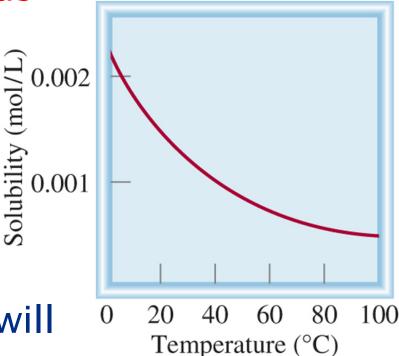
A 14.0% by mass acetic acid (CH₃COOH) solution has a density of 1.02 g/mL. What is its molality? What is its molarity?

> Molality = 2.71 m Molarity = 2.38 M

Solubility of Solids As A Function Of Temperature

14 The Solubilities Of Gases: Effect of Temperature

Gases are *less* soluble in liquids

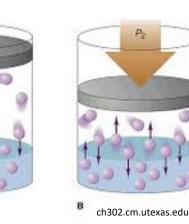

as temperature increases

- Molecules move faster
- Disrupt intermolecular forces
- Gases escape the liquid
- Fewer gas molecules/atoms in liquid = Lower solubility

In sealed container, pressure will increase with increasing temp.

Solubility (

Solubility of O₂ in water



• More gas out of solution, moving faster, colliding more with container

Gas laws (Chapter 5!) govern gas phase and thus solubility

The Solubilities Of Gases: Effect of Pressure Gas solubility in liquids increases as pressure increases Molecules pushed too close together so they are forced

back into liquid

If pressure is decreased.....

Henry's Law

c=kP c= solubility or concentration P= pressure k= proportionality constant Common units for k: c = moles/L and P= atm

If you know the concentration at one pressure, k allows you to determine concentrations at different pressures

Solutions Of Electrolytes

Colligative properties:

- Physical properties of solutions that depend on the <u>number</u> of solute particles but <u>NOT on the identity</u> of the solute.
- Ex: Boiling Point, Freezing Point, Osmotic Pressure

van't Hoff factor, i

- Used in solution equations for colligative properties (ex. Boiling point elevation: $\Delta T_b = iK_bm$)
- Nonelectrolytic solutions: i = 1.
- Electrolyte solutions: *i* = the number of ions the solute will dissociate into
- Ex*: Hexane, *i* = 1 NaCl, *i* = 2 Pb(NO₃)₂, *i* = 3
- *Note that these are the <u>theoretical</u> values. The experimental values are somewhat different due to formation of ion pairs.

Vapor-Pressure Lowering Raoult's Law:

$$P_a = X_a P^{\circ}_a$$

 P_a :Vapor pressure of solvent "*a*" above a solution P_a^o :Vapor pressure of pure solvent "*a*" x_a : Mole fraction of "*a*" in the solution

$$x_{i} = \frac{moles_{i}}{Moles_{total \ solution}} = \frac{n_{i}}{n_{total \ moles}}$$

Non-volatile solutes: Vapor pressure of the solution = vapor pressure of the solvent

 Vapor pressure will be lowered by presence of solute
Volatile solutes: Vapor pressure of the solution is sum of the partial pressures of the solute and the solvent
Works perfectly for ideal solutions; OK for dilute solutions What is the vapor pressure of water in a 100.0g ¹⁸ solution that contains 10.0g sucrose, C₁₂H₂₂O₁₁ at 40°C? The vapor pressure of pure water is 55.5 torr at 40°C. MM: sucrose = 342.30 g/mol; water = 18.015 g/mol)

Step 1:Determine mole fraction of water

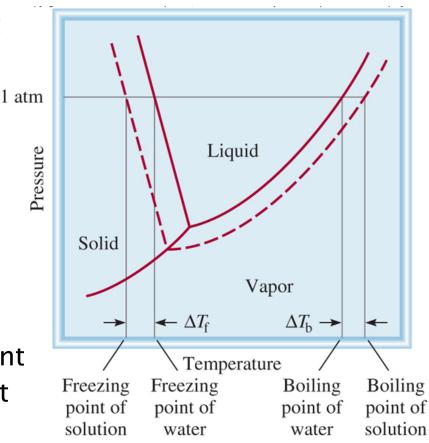
Step 2:Determine vapor pressure given P°= 55.5 torr at 40°C

A: 55.2 torr

What mass (g) of ethanol (46.069 g/mol) must be added to 550.0 g water (18.015 g/mol) to give a solution with a vapor pressure of water 1.5 mmHg less than that of pure water at 30°C?

Vapor pressure of water at 30°C is 31.8 mmHg.

A: 69.6 g


Boiling Point Elevation

Vapor pressure above a solution is always less than vapor pressure above pure solvent.

- 1. Higher temperature needed for vapor pressure to hit 1 atm.
- 2. Boiling point of solution higher than boiling point of pure solvent
- 3. Boiling Point Elevation depends on:
 - Type of solvent
 - # of solute particles

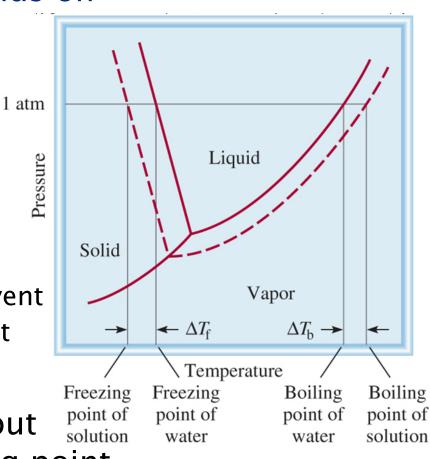
 $\Delta T_{b} = iK_{b}m$ $T_{b} = T^{\circ}_{b} + \Delta T_{b}$

$$\begin{split} m &= \text{ solute molality} \\ T_b &= \text{ boiling point of solution} \\ T^\circ{}_b &= \text{ boiling point of pure solvent} \\ K_b &= \text{ constant - based on solvent} \\ i &= \text{ van't Hoff factor} \end{split}$$

Freezing Point Depression

Solution freezes at lower temperature than pure solvent

Freezing Point Depression depends on


- Type of solvent
- # of solute particles

 $\Delta T_{f} = iK_{f}m$ $T_{f} = T^{\circ}_{f} - \Delta T_{f}$

m = solute molality T_f = freezing point of solution T°_f = freezing point of pure solvent K_f = constant – based on solvent

i = van't Hoff factor

- Only the pure solvent freezes out
- Pure substances:"sharp" melting point
- Impure materials: broad melting point range

What is the boiling point of a 0.886 m solution of pentane in benzene? For benzene: bpt = 80.1° C, K_b = 2.53° C/m

A: 82.3°C

22

What is the melting point of a 1.00 m solution of $CaCl_2$ in water? For water: mpt = 0.0°C, K_f = 1.86°C/m

A: - 5.6°C

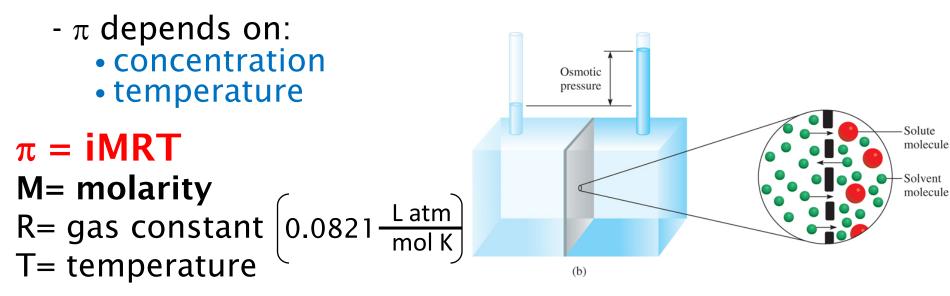
A solution of 2.366 g solute in 82.10 g cyclohexane ²³ freezes at 2.65°C. Determine the molar mass of the solute. For cyclohexane, K_f = 20.0°C/m and T°_f = 6.55°C.

Have freezing point of solution & pure solvent – can use $\Delta T_f = iK_f m$ to determine the molality of the solution

Use mass of solvent & molality to calculate moles solute

Given mass solute, so can calculate molar mass of solute

A: 148 g/mol


Constants

Will be provided on exams if needed

TABLE 13.2	Molal Boiling-Point Elevation and Freezing-Point Depression Constants of Several Common Liquids					
Solvent	Normal Freezing Point (°C)*	K _f (°C/m)	Normal Boiling Point (°C)*	K _b (°C/m)		
Water	0	1.86	100	0.52		
Benzene	5.5	5.12	80.1	2.53		
Ethanol	-117.3	1.99	78.4	1.22		
Acetic acid	16.6	3.90	117.9	2.93		
Cyclohexane	6.6	20.0	80.7	2.79		

Osmotic Pressure

- Semi-permeable membranes: Materials with tiny pores that only allow solvent molecules to pass
 - solute cannot get through the membrane
- **Osmosis:** Net flow of solvent molecules through a semipermeable membrane from dilute to concentrated solution.
- **Osmotic Pressure (** π **):** Pressure needed to stop osmotic flow

What is the osmotic pressure of a 0.238 M aqueous sugar solution at 25°C?

A: 5.83 atm

26

What is the molar mass of a solute if 397.2 g of the compound dissolved in water produces 592.4 mL of a solution that has an osmotic pressure of 1.98 atm at 35°C?

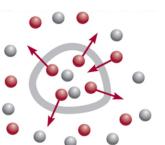
A: 8570 g/mol

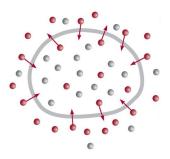
Practical Applications Of Osmosis

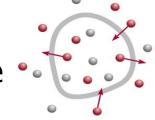
Isotonic Solution: Organ Transplants

- Same concentration on both sides of membrane
- Organs would burst if stored in water

Hypertonic Solution: Food Preservation


- Higher concentration outside the membrane
- Salt pulls water from microbes and kills them


Hypotonic Solution: Tree Growth


- Lower concentration outside the membrane
- Water pulled through sap to top of trees

Reverse osmosis: Water Purification

- Reversing the net flow of solvent through a membrane by applying pressure greater than osmotic pressure.
- Obtain water with low solute concentration

27