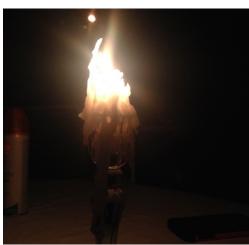
Phoenix.gov

Chapter 1 Chemistry: The Science of Change

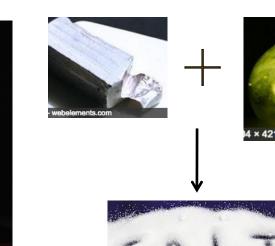
The science that studies the properties of substances & how substances react with one another.

How stuff works on a molecular/atomic/subatomic level

Chemistry!



Has mass & takes up space


ENERGY

The capacity to do work or cause change

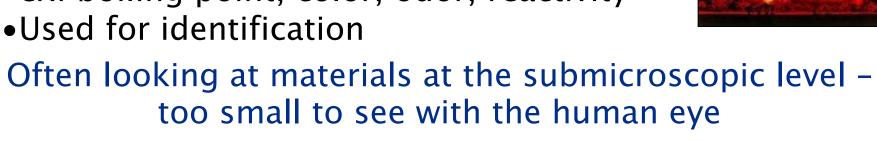
REACTIONS

How materials interact & change

Learning the Language

Chemistry describes materials and predicts behavior using three basic concepts

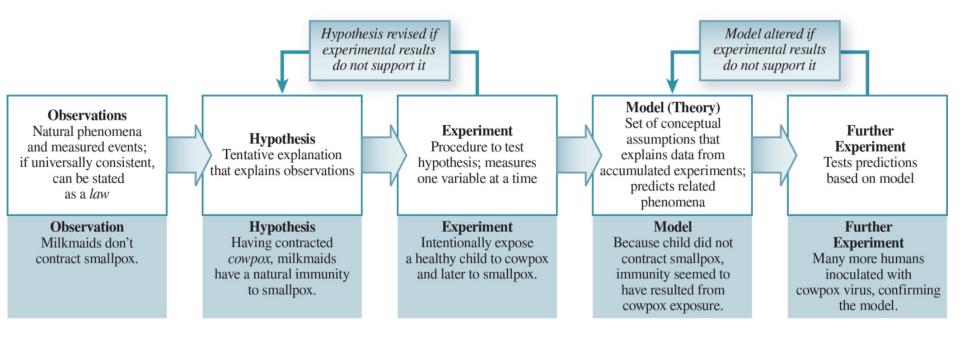
Composition: What is in a material


- Mass percent of elements/compounds
- Atomic/molecular ratios within material
- Stoichiometry

Structure

- Molecular/ionic/atomic arrangement
- Phase (solid, liquid, gas)

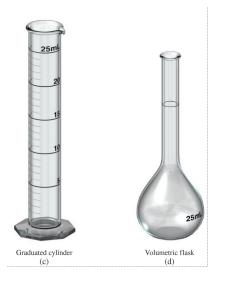
Properties - chemical & physical


- Specific to a particular material
- •ex: boiling point, color, odor, reactivity

The Scientific Method

Series of steps that explain an observation

Exposure to a virus can enable humans to build an immunity to that virus – enabled the development of vaccines


Most vaccines today use inactivated viruses - safer

Measurements

Determining how much matter is present

Volumetric pipette

273.15

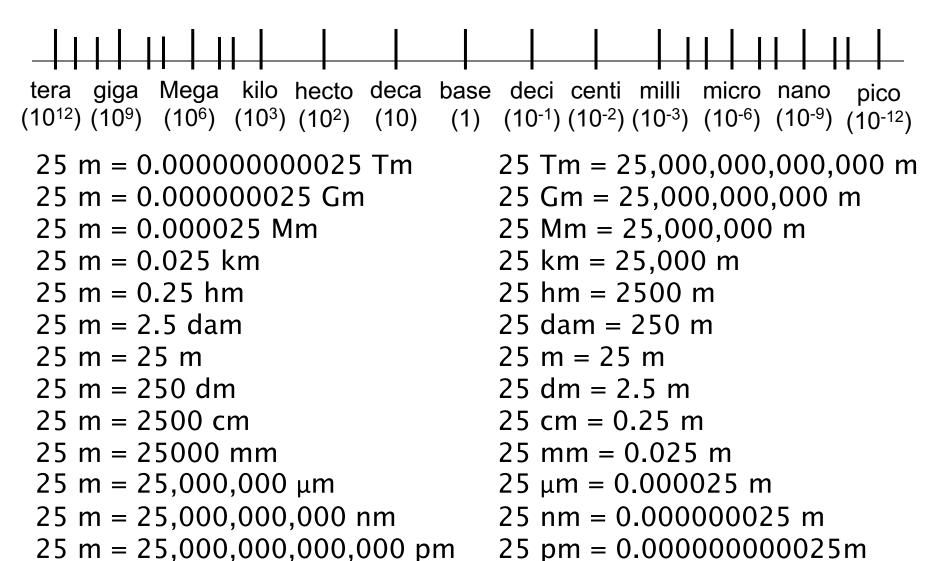
Base Units of Measurement International System of Units (SI)

TABLE 1.1	Base SI Units					
Base Quantity		Name of Unit	Symbol			
Length		meter	m			
Mass		kilogram	kg			
Time		second	S			
Electric current		ampere	A			
Temperature		kelvin	K			
Amount of substance		mole	mol			
Luminous intensity		candela	cd			

Will be used frequently in CHM 101; you are expected to know them! (Depending on other classes, will likely need to know ampere in the future.)

SI Prefixes

hecto (deca (1 Base


Yes, you need to know these too

T	TABLE 1.2		Prefixes Used with SI Units		
Pr	refix	Symbo	l Meaning	Example	
Te	Tera-	T	$1 \times 10^{12} \ (1,000,000,000,000)$	1 teragram (Tg) = 1×10^{12} g	
G	Giga-	G	$1 \times 10^9 \ (1,000,000,000)$	1 gigawatt (GW) = 1×10^9	
M	lega-	M	$1 \times 10^6 \ (1,000,000)$	1 megahertz (MHz) = 1×10^6	
K	Kilo-	k	$1 \times 10^3 \ (1,000)$	1 kilometer (km) = 1×10^3 m	
D	Deci-	d	$1 \times 10^{-1} \ (0.1)$	1 deciliter (dL) = 1×10^{-1} L	
Ce	Centi-	c	$1 \times 10^{-2} \ (0.01)$	1 centimeter (cm) = 1×10^{-2} m	
M	Ailli-	m	$1 \times 10^{-3} \ (0.001)$	1 millimeter (mm) = 1×10^{-3} m	
Mi	licro-	μ	$1 \times 10^{-6} \ (0.000001)$	1 microliter (μ L) = 1 × 10 ⁻⁶ L	
Na	lano-	n	$1 \times 10^{-9} \ (0.000000001)$	1 nanosecond (ns) = 1×10^{-9} s	
Pi	Pico-	p	$1 \times 10^{-12} \ (0.0000000000001)$	1 picogram (pg) = 1×10^{-12} g	

The Great Majestic King Henry Died By Drinking Chocolate Milk at Mad Nick's Palace

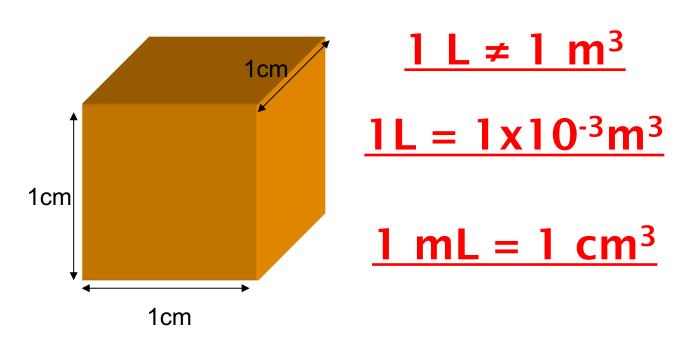
The Great Majestic King Henry Died By Drinking Chocolate Milk at Mad Nick's Palace

Metric System is Base 10 - essentially just moving the decimal point

Metric Conversion Examples

1.) Convert 256.74g to kg (0.25674 kg)

2.) How many milliliters are in 3.78 L?


3.) Convert 18000000 cm into Mm (0.18 Mm)

Derived Units: Volume

SI derived unit for volume is a cubic meter (m³)

Common unit is a "Liter (L)"

$$1L = 1000cm^{3} = \frac{1000cm}{1}x\frac{1cm}{1}x\frac{1cm}{1}x\frac{1m}{100cm}x\frac{1m}{100cm}x\frac{1m}{100cm} = 1x10^{-3}m^{3}$$

Metric Conversions with Units that are squared (s²), cubed (cm³), etc. can be tricky:

ex.) Convert 87856 cm³ to m³

Note: $1 \text{ m} = 100 \text{ cm} \text{ but } 1\text{ m}^3 \neq 100 \text{ cm}^3$ Need to do the conversion 3x for cubed numbers (2x for squared, etc.)

Derived Units: Density

Density: Ratio of mass to volume of a material

density =
$$\frac{\text{mass}}{\text{volume}} = \frac{m}{V}$$

SI derived unit for density is kg/m³

 $1 \text{ g/cm}^3 = 1 \text{ g/mL} = 1000 \text{ kg/m}^3$


Substance	Density (g/cm ³)
Air*	0.001
Ethanol	0.79
Water	1.00
Mercury	13.6
Table salt	2.2
Iron	7.9
Gold	19.3

Intensive property

- Can be used to identify a material
- Units of mass and volume may vary

Handling Numbers

Math Review

Significant Figures:

Number of Digits to Report in Final Answer

- 1. All non-zero digits are significant
- 2. Use decimal point to decide if zeros are significant

No decimal point:

Between 2 numbers significant <u>50.002</u> 5 sig figs Before decimal point not significant 0.502 3 sig figs Before the first digit not significant 0.0052 2 sig figs End of # after decimal significant 0.0200 3 sig figs not significant 500 1 sig fig

3. Exact numbers have unlimited number of sig. figs.

Inherently an integer: e.g. 4 sides to a square

Inherently a fraction: e.g. ½ of a pie

Obtained by counting: e.g. 47 people in a class

Defined quantity: e.g. 12 eggs in a dozen

Determining the correct number of significant figures (sigfigs) in math problems: Answer is based on the LEAST significant value

Addition/subtraction - Sig figs based on decimal

$$\begin{array}{r}
1500 \\
+ 2976 \\
\hline
4476 \longrightarrow 4500
\end{array}$$

$$\begin{array}{r}
12.45XX \\
- 9.2680 \\
\hline
3.1820 \longrightarrow 3.18
\end{array}$$

Multiplication/Division - Sig figs based on all sig digits

4 sig figs
$$3 < 4$$
 so 3 sig figs $3.182 \times 3.57 = 11.35974 \longrightarrow 11.4$ 3 sig figs

Rounding is based on number <u>after</u> last sigfig: ≥ 5 round up ≤ 5 round down

Multiple math functions - follow order of ops

$$(12.45 - 9.2680) \times 3.575 = 11.37565$$

Step one: Subtraction \rightarrow Sigfigs based on decimal (12.45 - 9.2680) = 3.182

2 sigfigs after decimal 12.45XX

3 sigfigs overall in final answer $\frac{-9.2680}{3.1820}$


Step two: Multiplication → Sigfigs based on all sig digits

$$3.182 \times 3.575 = 11.37565$$

3 sigfigs in 1st number, 4 in $2^{nd} \rightarrow 3$ in final answer Here addition limits sigfigs

Round up because the next number is >5 $\frac{11.37565}{}$ \rightarrow 11.4

Why do significant figures matter?

What if this is actually 121.1?!?

Width of room: 244.6 cm Will the two desks fit?

Fitting desks in a room may not seem all that important - but the same concept is true for the design of buildings & bridges!

Scientific Notation

For very large or very small numbers

```
Significant digits \longrightarrow 1.7 x 10<sup>6</sup> \leftarrow Size of number (multiplier) 17000000 \rightarrow 1.7 x 10<sup>6</sup> \leftarrow Positive exp = large number (>1) 0.0000017 \rightarrow 1.7 x 10<sup>-6</sup> \leftarrow Negative exp = small number (<1)
```

Rules:

- Keep all significant numbers
- Place decimal after 1st significant number (1.7)
- To get exponent:
 - Count number of places decimal moved to get to correct location (after 1st significant number). This value is your exponent.
 - If the number is >1, exp is positive $1700000 \rightarrow 1.7 \times 10^6$
 - If the number is <1 exp is negative $0.0000017 \rightarrow 1.7 \times 10^{-6}$

Scientific Notation Examples

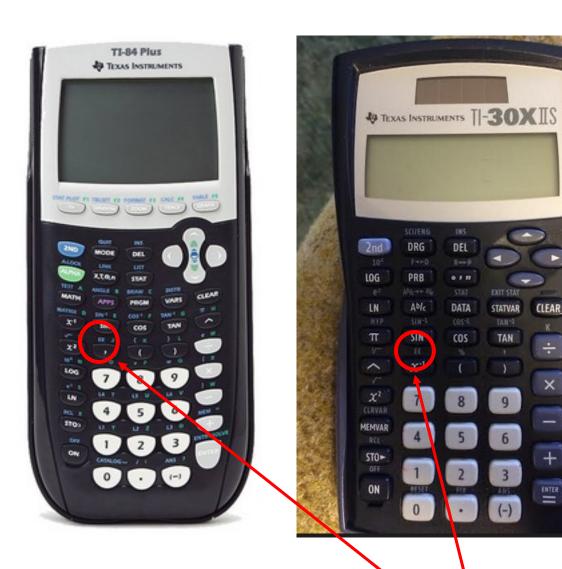
Write the Following in Scientific Notation:

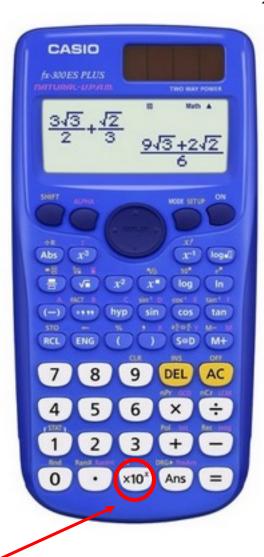
Write the Following in Standard Format:

1.) 280000000

1.) 2.45×10^2

2.) 280.0

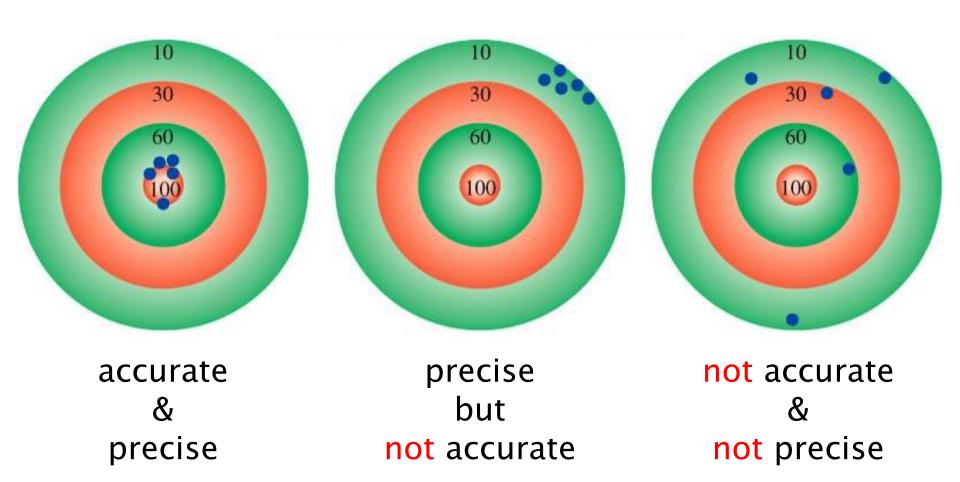

 $2.) 3.98 \times 10^{6}$

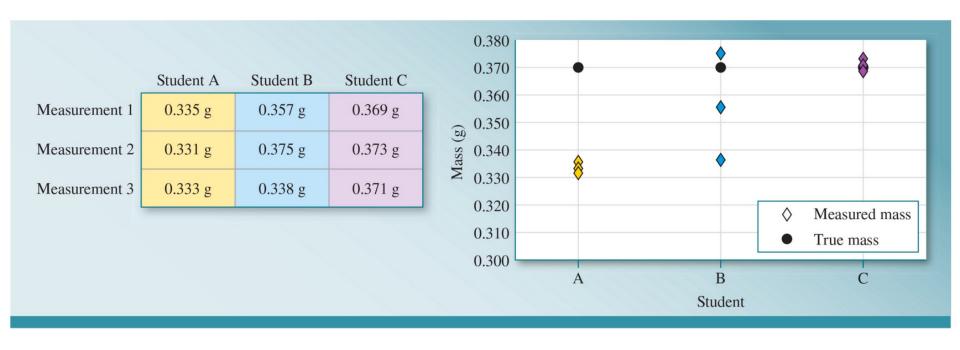

3.) 0.00000004577

 $3.) 4.29 \times 10^{-3}$

4.) 0.00000060

4.) 8.0×10^{-6}




Use EXP, SCI, EE or x10x keys on calculator

Precision and Accuracy

<u>Accuracy</u> - how close a measurement is to the true value <u>Precision</u> - how close measurements are to each other

Precision and Accuracy

Percent Error

Comparison of experimental results to expected or real values

• Usually reported without a + or - sign

Experimental value - Real value = **Deviation**

Often reported with a + or - sign

Real value:

- · Widely accepted, often an industry standard value
- Average of several experiments can sometimes be used if real value is unknown

Dimensional Analysis Problem Solving & Canceling Units

Look at question:

How many kilograms of methanol will fill a 15.5 gallon fuel tank of a car modified to run on methanol? (Density of methanol = 0.791 g/mL)

What unit do you want to solve for? kilograms (kg) What information do you need?

Data in problem: Volume = 15.5 gallons

Density of methanol= 0.791 g / mL

Data to look up: Gallon to Liter conversion: 1gal= 3.785L

Data to know: 1000mL = 1L & 1000g = 1kg

$$\frac{kg}{1} = \frac{0.791g}{1ml} x \frac{1kg}{1000g} x \frac{1000mL}{L} x \frac{3.785L}{1gal} x \frac{15.5gal}{1} = 46.4kg$$

Dimensional Analysis Problems

1) How many kilograms of methanol will fill a 15.5 gallon fuel tank of a car modified to run on methanol? (Density of methanol = 0.791 g/mL; 1 gal = 3.785 L) A: 46.4 kg

2) How many liters are equal to 500. cm³? A: 0.500 L

3) A cube with sides measuring 7.50 m has a mass of 0.04567 mg. What is the density of the cube in $\mu g/mL$? A: 1.08 x 10⁻⁷ $\mu g/mL$

Temperature Units: Celsius & Kelvin

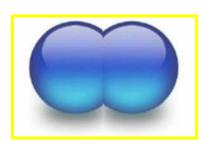
- Kelvin is the official SI unit but degrees Celsius are often used.
- OK is absolute zero lowest possible temp.
 - Never actually reached will not have 0K
- Temp in Kelvin = $^{\circ}$ C + 273.15
- Temp in $^{\circ}$ C = Kelvin 273.15
- Fahrenheit rarely used in science today

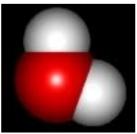
Classifications of Matter

What is in the material you are investigating?

Pure materials

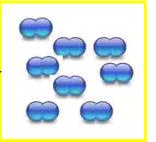
Atom:

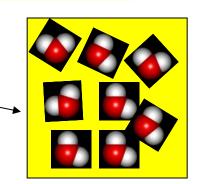

Smallest distinctive unit w/ properties of element

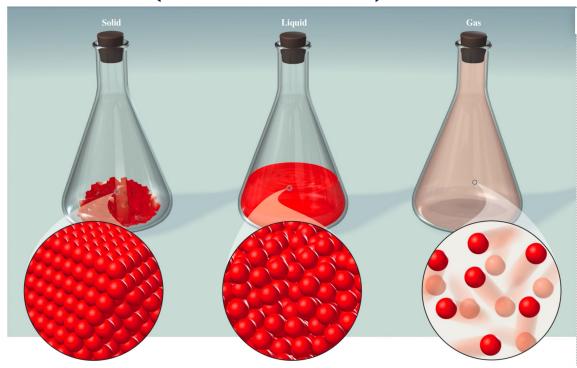


• Ions are charged atoms

Molecule:


• 2 or more atoms together




Pure Substance:

- specific composition & distinct properties
- TWO types of pure substances:
 - Element → one type of atom
 - Compound → more than one type
 of atom <u>chemically bonded</u>
 - Compounds contain more than one element – still a pure substance!!!

States (Phases) of Matter

Solid:

- Particles close together
- Orderly arrangement
- Little freedom of motion
- Specific shape & volume

Liquid:

- Particles free to move around each other
- Specific volume
- No specific shape

Gas:

- Particles very far apart
- Particles free to move around
- No specific shape or volume

Liquids & gases are fluids - they can "flow"

Mixtures

Mixture: Combination of 2 or more pure substances

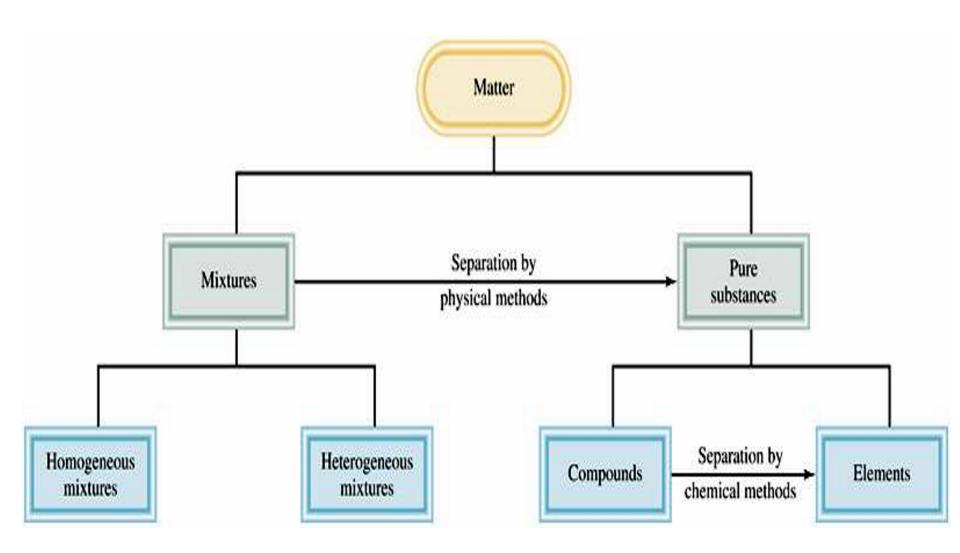
Can be separated by physical means

Homogeneous Mixture

- Substances stay mixed
- No distinct layers
- Uniform properties
- Also called a "solution"

14 karat gold Mixture of gold and silver

Heterogeneous Mixture


- Substances separate easily
- Distinct layers often seen
- Properties may not be uniform

Iron filings and sand

Matter Summary

	Heterogeneous mixture	Homogeneous mixture	Pure Substance	33
800 × 450 - bettycrocker.com				
300 × 199 - webelements.com				
900 × 675 - britannica.com				
900 × 676 - britannica.com				
450 × 450 - amazon.com				
600 × 400 - health.harvard.edu				

Physical and Chemical Properties of Matter

Can be used to identify & separate substances

Physical Properties of Matter

Can be changed without changing molecular composition

Chemical identity is NOT CHANGED eg: smashing a window – still glass melting ice – still water

Phase changes are physical changes (solid to liquid to gas etc.)
Melting, freezing, boiling, etc.

CHEMICAL BONDS ARE NOT BROKEN DURING PHASE CHANGES!

Can be used to ID a substance without damage Color, odor, solubility, conductivity, density molecular mass, boiling/melting points
Original compound can be recovered

Chemical Properties of Matter

Describe how chemicals react with each other

What will they react with? How will they react?

- Generate heat or light?
- Burn? Explode?
- Decompose slowly? (Rusting, rotting)

Compositional changes to molecules

- Often called a chemical change
- Original material changed on an atomic level

Original compound no longer present

 Compound cannot be restored to its original form without another chemical change

Extensive and Intensive Properties

Extensive Property: Depends on amount of matter present

ex: mass, length, volume, heat, intensity of color or odor

Intensive Property: Independent of amount of matter present

ex: Temperature, boiling point, color, odor

Often a calculated ratio
ex: Density (mass/vol ratio)
Molar mass (grams/mol)
Specific heat (J/g)

Intensive properties can be used to identify a material, extensive properties cannot. Why?