Chapter 9

Chemical Reactions in Aqueous Solutions

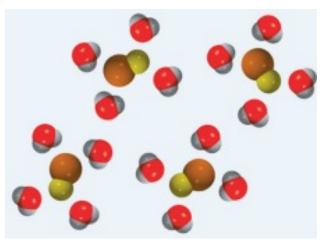
Solutions: Key Terms

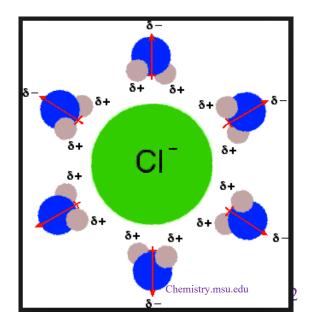
•Homogenous mixture of 2 or more substances

Solvent:

Solution

- Component with largest amount
- Water, the "universal solvent"


 (does not dissolve everything)


Solute:

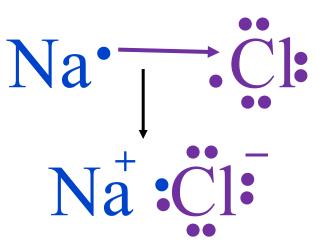
 Components present in smaller amounts than the solvent

Solvation/dissolving:

- Solvent molecules surround & support solute molecules or ions
- Solvent is NOT part of chemical reactions

Solubility Depends on Bond Type

Electronegativity – measure of atom's attraction for electrons


• Electronegativity difference determines bonding type

lonic:

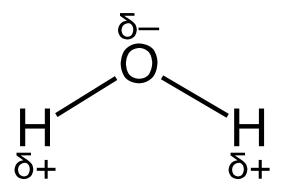
- Large electronegativity difference
- Metal + nonmetal
- Transfer of electrons
 - Involves ions have charges!

Covalent:

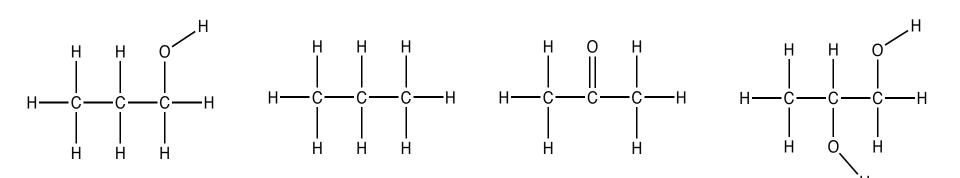
- Moderate to small electroneg. diff.
- Often two nonmetals
- Electrons are shared
 - Atoms remain neutral not ions!
- Two kinds, polar and nonpolar

 $H^+ + O_+ + H$

Covalent Bonds: Nonpolar vs Polar


Nonpolar - electrons shared equally

- very small/no electroneg. difference
- no partial charges

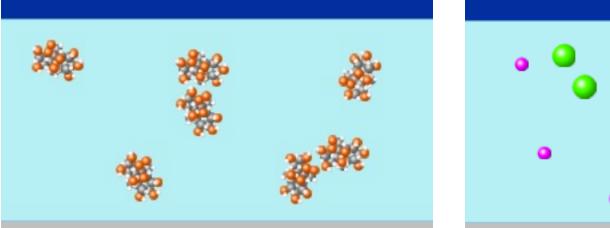

Polar - electrons shared unequally

- moderate electroneg. difference
- results in partially charged atoms (δ^+ or δ^-)
- water is polar

Like Dissolves Like!

Rank the following in order of increasing water solubility. Remember that water is polar & can hydrogen bond Greater polarity & hydrogen bonding ability increase water solubility.

Dissolution vs Dissociation


Ionic & Covalent Compounds Behave Differently

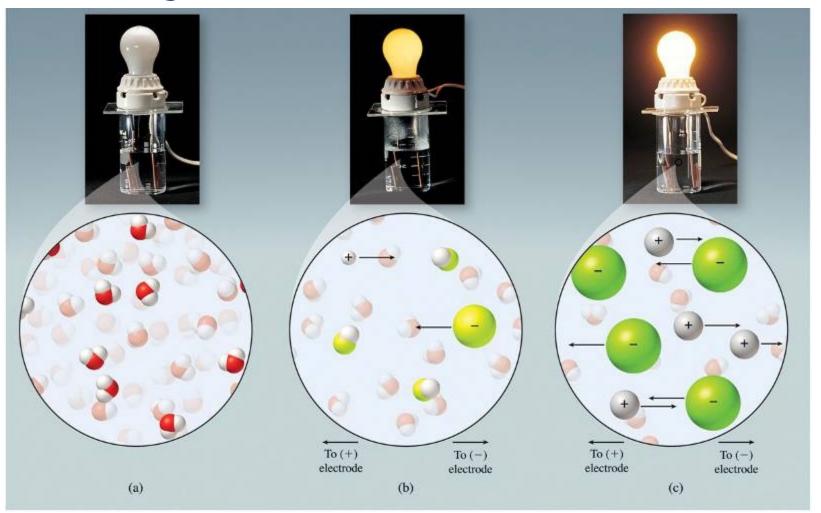
Sugar vs Salt

Dissolution vs Dissociation

Covalent Molecule

Ionic Salt

Dissolved sugar:
molecule remains together
NOT dissociation!


Dissolved salt:

- ions separate
- dissociation!

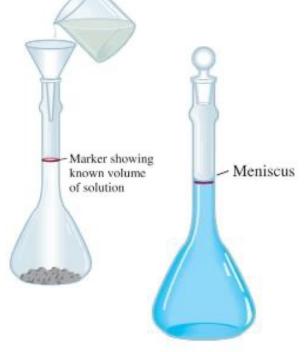
Extent of dissociation/ionization impacts many properties – e.g. acid base strength, conductivity, freezing point

Conductivity of Electrolytes in Aqueous Solutions

Non-electrolyte Weak electrolyte Strong electrolyte No ionization Some ionization Full ionization Ex: sugar Ex: acetic acid Ex: NaCl

Concentration of Solutions: Molarity

Molarity (*M*) = moles solute/L solution


- Units: mol/L (molar, M)
- Conversion factor between moles solute & volume of solution.

How to prepare 2 liters of a 1.0M solution of NaCl: 1. Calculate mass of NaCl needed.

$$\frac{1mol_{NaCl}}{1L_{NaCl}} x \frac{58.5g_{NaCl}}{1mol_{NaCl}} x \frac{2L_{NaCl}}{1} = 117g_{NaCl}$$

2. Weigh out mass of NaCl.

- 3. Pour NaCl into volumetric flask.
- 4. Add water until the water reaches the 2L mark.

Molality

Molality (*m*)= moles solute/kg solvent Units: mol/kg (molal, m) Based on mass, not volume, therefore: NOT TEMPERATURE DEPENDENT

How to prepare ~2 kg of a 1.0m solution of NaCI: 1. Calculate mass of NaCl needed.

 $\frac{1mol_{NaCl}}{\text{kg solv.}} \ge \frac{58.5 g_{NaCl}}{1mol_{NaCl}} \ge 2 \text{ kg solv.} = 117 g_{NaCl}$

2. Weigh out mass of NaCl.

- 3. Place NaCl into container.
- 4. Tare (zero) the container. Add water until you obtain the desired mass of water.

Molarity Calculations:

1. What is the concentration, in moles/L, if 22.8 g of potassium dichromate ($K_2Cr_2O_7$) is dissolved to make 500.0 mL of solution?

2. How many grams of potassium dichromate ($K_2Cr_2O_7$) are needed to prepare 125 mL of a 1.83 M solution?

3. What volume, in mL, of a 2.50 M solution of potassium dichromate ($K_2Cr_2O_7$) would contain 350.0 g of $K_2Cr_2O_7$?

A: 476 mL ₁₃

Dilution Calculations

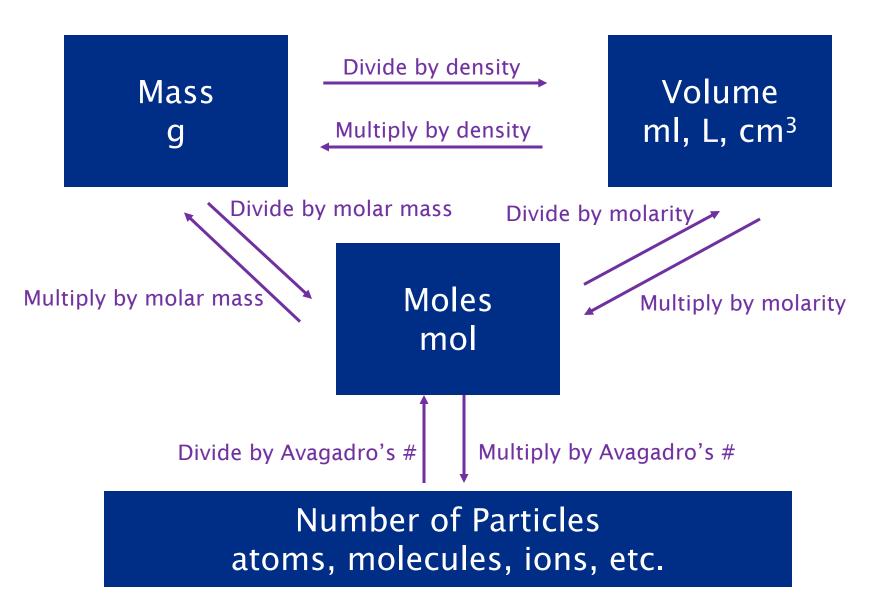
Water is added to a small amount of stock solution to make a less concentrated solution.

Addition of solvent does not change the mass or moles of solute in a solution but does change the solution

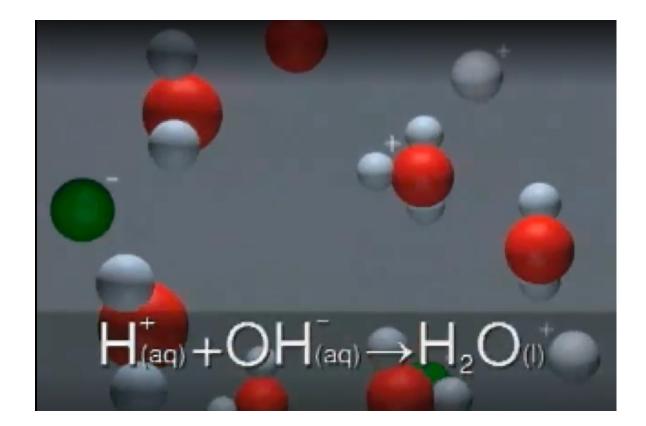
concentration.

$$M_1V_1 = M_2V_2$$

(mol/L)(L)=(mol/L)(L)

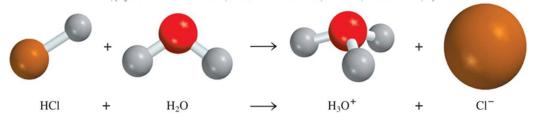


Calculate the volume of 1.0M stock solution needed to make 2000.0mL of a 0.12M solution of HCl.

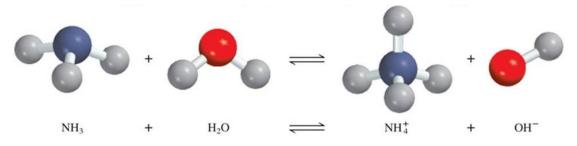

A: 240 mL

This equation is ONLY for dilutions. Never use this equation for titrations.

Conversion Relationships

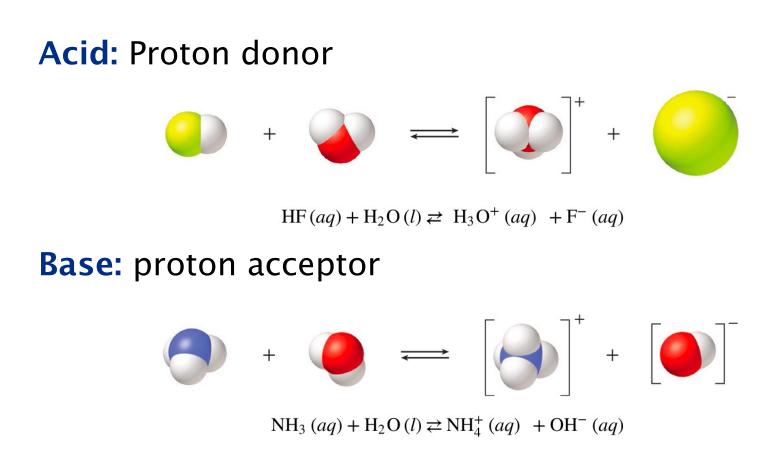


Acid-Base Reactions



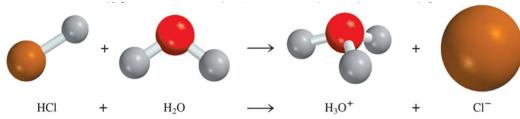
Acid-Base Reactions Arrhenius Acids and Bases

Acid: Compound that ionizes in water to form a solution of H^+ ions (H_3O^+) and anions.


Base: Compound that ionizes in water to form a solution of OH⁻ ions and cations

Neutralization: Reaction between Arrhenius acid & base $H^+ + OH^- \rightarrow H_2O$ & cation + anion \rightarrow salt

Acid-Base Reactions Brønsted Acids and Bases


A hydrogen atom that has lost its electron is often referred to as a **proton** (because that is all that is left).

Strength of Acids and Bases

Strong acids and bases

- •<u>Completely ionized</u> in water to give either H₃O⁺ or OH⁻
- Good conductors of electricity.
- Directional arrow (\rightarrow) indicates dissociation is complete

Weak acids and bases

- <u>Partial ionization in water, most of original compound</u> remains
- Poor conductors
- Double arrow $(\leftrightarrow, \overrightarrow{\leftarrow})$ indicates dissociation is incomplete

OH-

Polyprotic Acids

Acids that have more than one ionizable proton

- Monoprotic one ionizable proton
- Diprotic two ionizable protons
- Polyprotic multiple ionizable protons
- Ionize in successive steps

 $H_2SO_4(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + HSO_4^-(aq)$

 $HSO_4^-(aq) + H_2O(I) \iff H_3O^+(aq) + SO_4^{2-}(aq)$

- In this case, the first proton dissociates completely
 > strong
- The second proton is only partially removed
 > weak

Acid-Base Neutralizations Strong acid with strong base NaOH (aq) + HCl (aq) \rightarrow NaCI (aq) + H₂O Na⁺ +OH⁻ + H⁺ + Cl⁻ \rightarrow Na⁺ + Cl⁻ + H₂O Net ionic equation: OH⁻ + H⁺ \rightarrow H₂O

Solid (weak) base with strong acid $Fe(OH)_3(s) + 3HCl(aq) \rightarrow FeCI_3(aq) + 3H_2O(l)$ $Fe(OH)_3(s) + 3H^+(aq) + 3Cl^-(aq) \rightarrow Fe^{3+}(aq) + 3Cl^- + 3H_2O$ Net ionic equation: $Fe(OH)_3(s) + 3H^+ \rightarrow Fe^{3+} + 3H_2O$

Weak acid with strong base

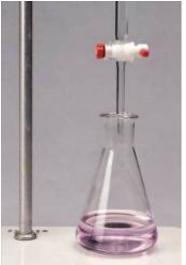
 $CH_{3}COOH(aq) + NaOH(aq) \rightarrow NaCH_{3}COO(aq) + 3 H_{2}O(l)$ $CH_{3}COOH(aq) + Na^{+}(aq) + OH^{-}(aq) \rightarrow Na^{+}(aq) + CH_{3}COO^{-}(aq) + H_{2}O(l)$ Net ionic equation: $CH_{3}COOH(aq) + OH^{-}(aq) \rightarrow CH_{3}COO^{-}(aq) + H_{2}O(l)$

Common Acids and Bases

Strong AcidsWeak AcidsHCI, HI, HBr HF, HNO_2, H_3PO_4 HNO_3 Acetic acid (CH_3COOH) H_2SO_4 Organic acids tend to $HCIO_4$ be weak

Strong Bases NaOH, KOH, LiOH Ba(OH)₂ Weak Bases

Other hydroxides (don't dissolve)


Ammonia: NH₃

REMEMBER: FULL IONIZATION = STRONG

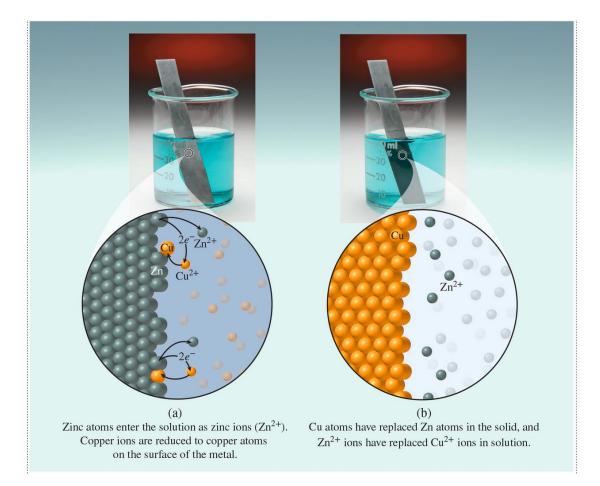
Simple Acid-Base Titration Used to determine acid/base [concentration]

- 1. To determine [acid], use known basic soln To determine [base], use known acidic soln
- React solution of known concentration
 w/ measured volume of unknown solution
- 3. Add known solution dropwise until **endpoint** of reaction
 - Ratio of reactants equals that in balanced equation.
 - For acid/base: moles H⁺ = moles OH⁻
 - Use an *indicator* to determine endpoint
- 4. Record volume of known solution needed to reach endpoint
- 5. Calculate molarity of unknown solution based on initial volume of unknown soln & molarity & volume needed for known soln.

Simple Acid-Base Titration

25.00-mL of 0.200 M (H_2SO_4) is titrated with 12.32 ml of a NaOH solution. What is the molarity of the NaOH solution?

1) Write the balanced equation


2) Determine # moles used of known solution (H_2SO_4)

3) Use balanced equation to get moles of unknown (NaOH)

4) Divide by volume of unknown to get molarity

 $M_{NaOH} = 0.812M_{24}$

Redox Reactions

Oxidation-Reduction Reactions Oxidation-reduction reactions (REDOX reactions):

- Occur when electrons are transferred from one reactant to another during a chemical reaction.
 - There is a change in oxidation number for both substances

Oxidation State/oxidation number: Theoretical charge on atom

- Oxidation the process where the <u>oxidation number increases</u>. – Electrons are <u>lost</u> from the substance
- **<u>Reduction</u>** the process where the <u>oxidation number decreases</u>. – Electrons are <u>gained</u> by the substance

Oxidation and reduction always accompany each other; Neither can occur alone

920 × 690 - houstonchronicle.com

OIL RIG Oxidation Reduction Is Is Loss Gain

Oxidation Number Rules

The rule earlier in the list always takes precedence.

1.) Overall Ox # for a compound is zero

2.) Ox # = 0 for an element (not in a compound)

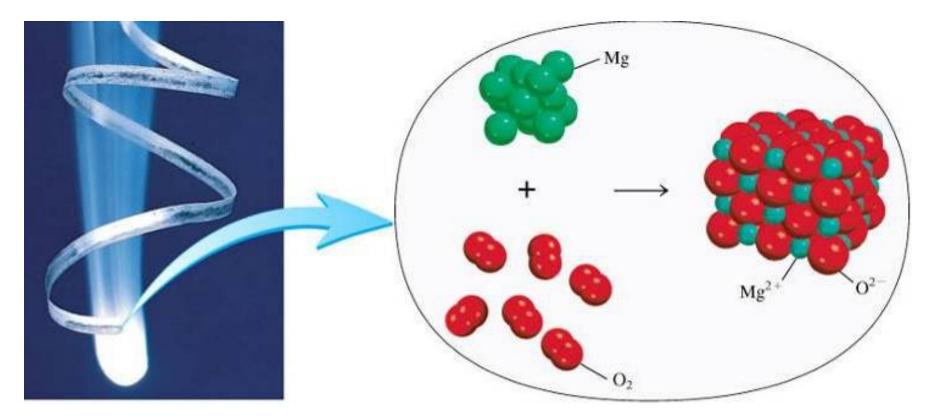
Ox # = ionic charge for an ion

- 3.) Ox # = +1 for IA elements & H (note: if w/metal H is -1)
- 4.) Ox # = +2 for 2A elements
- 5.) Ox # = -2 for oxygen (usually)
- 6.) Ox # = -1 for 7A elements (If both elements are in 7A, the one higher in the list is -1)
- 7.) Ox # = -2 for 6A elements other than oxygen
- 8.) Ox # = -3 for 5A elements (very shaky!!!)

Determining Oxidation Numbers Determine the oxidation number of each element in: NH_3 CO_3^{2-} H_2O H_2O_2 NH_{4}^{+} NO_3^- If compound contains polyatomic ions, separate into ions before determining Ox. state of each element.

ex: NH_4NO_3

29


Is it REDOX?

$Zn(s) + 2 H_2O(g) \rightarrow H_2(g) + Zn(OH)_2$

$ZnCl_2(aq) + 2 NaBr(aq) \rightarrow 2 NaCl(aq) + ZnBr_2(aq)$

Redox Reaction: Half-reactions

Oxidation half-reaction: Reduction half-reaction: Sum of half-reactions: $Mg (s) \rightarrow Mg^{2+} + 2e-$ 1/2O₂(g) + 2e- \rightarrow O²⁻ Mg (s) + 1/2O₂(g) \rightarrow MgO(s)

Oxidizing and Reducing Agents

Oxidizing agent: reactant that promotes oxidation

- Oxidation = loss of electrons
- Oxidizing agent takes e^- from other species \rightarrow is reduced!
- Characteristic of nonmetals: ex: fluorine, oxygen.
- High electron affinity: easily gains electrons

Reducing agent: reactant that promotes reduction

- Reduction = gain in electrons
- Reducing agent loses $e^- \rightarrow$ is oxidized!
- Characteristic of an active metal, such as sodium.
- Low ionization energy: easily loses electrons

 $\begin{array}{ccc} 0 & 0 & +1 & -2 \\ 4 \operatorname{Na} + \operatorname{O}_2 \xrightarrow{} 2 \operatorname{Na}_2 \operatorname{O} \end{array}$

Na oxidized; is reducing agent O reduced; is oxidizing agent 32

Writing Half Reactions & Determining Oxidizing & Reducing Agents

1.) Ba + FeCl₂ \rightarrow BaCl₂ + Fe

oxidation:

reduction:

2.) $F_2 + 2 \operatorname{NaCl} \rightarrow \operatorname{Cl}_2 + 2 \operatorname{NaF}$

oxidation:

reduction:

Balancing Simple Redox Reactions Using Charge

- Balance the following redox reaction: $Fe^{3+}(aq) + Cu(s) \rightarrow Fe(s) + Cu^{2+}(aq)$ Process:
- 1. Write out the half-reactions
- 2. Add coefficients to get an equal number electrons in products & reactants
- 3. Add the two half-reactions and cancel the electrons

Elemental Oxidation Numbers

1 1A 1 H +1 -1	10																18 8A 2 He
	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	
3 Li +1	4 Be +2											5 B +3	6 C +2 +2 4	7 X + 4 + 3 + 1 - 3	8 O ² + ¹ - ² - ¹ - ² - ¹ - ²	9 F -1	10 Ne
11 Na +1	12 Mg +2	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B—	10	11 1B	12 2B	13 Al +3	14 Si +4 -4	15 P +5 +3 -3	16 S +6 +4 +2 -2	17 CT7604401	18 Ar
19 K +1	20 Ca +2	21 Sc +3	22 Ti +4 +3 +2	23 V +5 +4 +3 +2	24 Cr +6 +5 +4 +3 +2	25 Mn +7 +6 +4 +3 +2	26 Fe +3 +2	27 Co +3 +2	28 Ni +2	29 Cu +2 +1	30 Zn +2	31 Ga +3	32 Ge +4 -4	33 As +5 +3 -3	34 Se +6 +4 -2	35 Br +5 +3 +1 -1	36 Kr +4 +2
37 Rb +1	38 Sr +2	39 Y +3	40 Zr +4	41 Nb +5 +4	42 Mo +6 +4 +3	43 Tc +7 +6 +4	44 Ru +8 +6 +4 +3	45 Rh +4 +3 +2	46 Pd +4 +2	47 Ag +1	48 Cd +2	49 In +3	50 Sn +4 +2	51 Sb +5 +3 -3	52 Te +6 +4 -2	53 I +7 +5 +1 -1	54 Xe +6 +4 +2
55 Cs +1	56 Ba +2	57 La +3	72 Hf +4	73 Ta +5	74 W +6 +4	75 Re +7 +6 +4	76 Os +8 +4	77 Ir +4 +3	78 Pt +4 +2	79 Au +3 +1	80 Hg +2 +1	81 TI +3 +1	82 Pb +4 +2	83 Bi +5 +3	84 Po +2	85 At -1	86 Rn

Types of Redox Reactions

Combination: $2Al(s) + 3Br_2(g) \rightarrow 2AlBr_3(s)$ $0 \qquad 0 \qquad +3 \ -1$ Decomposition: $2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$ $+1 \ +5 \ -2 \qquad +1 \ -1 \qquad 0$

Disproportionation (e.g. bleach production): $Cl_2(g)+NaOH(aq)\rightarrow NaOCl(aq)+Cl^-(aq)+H_2O(l)$

0 +1 -2 +1 +1 -2 +1 -1 +1 -2

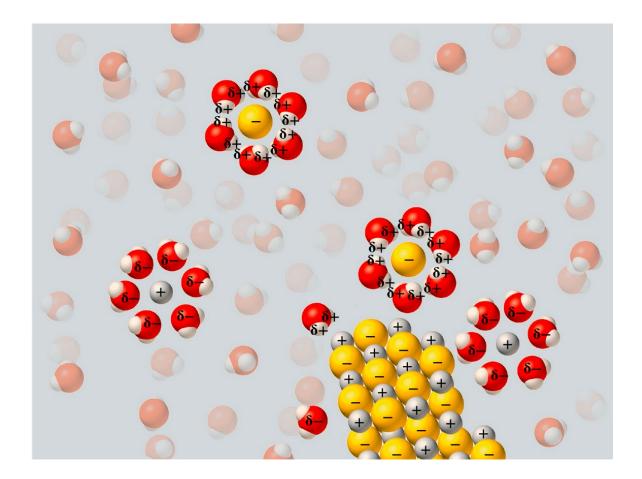
Combustion: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ -4 +1 0 +4 -2 +1 -2

Single Displacement: $Cl_2(g) + 2KBr(s) \rightarrow Br_2(g) + 2KCl(s)$ 0 +1 -1 0 +1-1

No need to memorize – you can always just figure out the oxidation numbers! 36

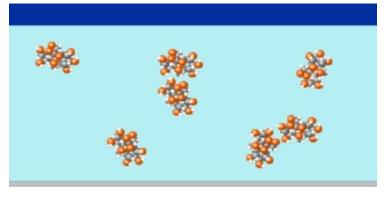
Redox Titration

Determine the concentration (M) of a potassium permanganate (KMnO₄) solution if 25.32 mLs are needed to react completely with 7.24 g $Na_2C_2O_4$ (s).

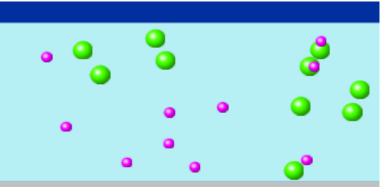

 $2KMnO_4 + 5Na_2C_2O_4 + 8H_2SO_4 \rightarrow 10CO_2 + 8H_2O + 2MnSO_4 + 5Na_2SO_4 + K_2SO_4$ $Na_2C_2O_4 = 133.9992g/mol$

1.) Determine amount in moles of KMnO₄. (Stoichiometry!)

2.) Determine concentration of KMnO_{4.} (Molarity!)



Ion Concentration & Ionic Equations



Total Ion Concentration Can Be Higher Than Concentration of <u>Compound</u> in Solution

Covalent Molecule

Ionic Salt, ex. NaCl

Concentration: 7 molecules/jar

Concentration: 10 NaCl units/jar 10 Na⁺ +10 Cl⁻ = 20 ions/jar

Calculating Ion Concentrations in Solution

What are the concentrations of aluminum ion, sulfate ion & nitrate ion in a solution that is 1.2 M aluminum sulfate and 1.0 M aluminum nitrate? A: 3.6 M SO_4^2 ; 3.0 M NO_3^2 ; 3.4 M Al^3 +

1. Write down how the salts dissociate in water.

2. Multiply concentration of each material by the number of ions it puts into the solution.

3. Add up ions if there is more than 1 source.

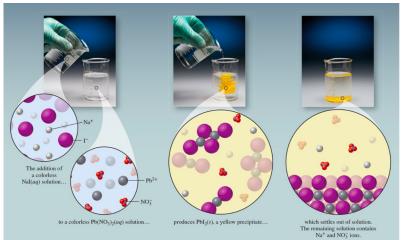
Mathematical Solubility Problems

What is the molarity of a sodium phosphate solution if adding AgNO₃ (aq) to 75.0 mL produces 0.205 g Ag₃PO₄ (s)?

- 1. Produce the balanced chemical equation.
- 2. Determine the amount of $Ag_3PO_4(s)$ in moles. MM = 418.5754 g/mol

3. Use moles of $Ag_3PO_4(s)$ to determine the moles Na_3PO_4 .

4. Calculate the molarity (mol/L) of Na_3PO_4 .


A: 6.53x10⁻³ M⁴¹

Types of Ionic Reactions: Precipitation Reactions

Precipitation: lons in solution combine to form an insoluble solid salt

Precipitate: Solid salt that is formed

<u>Spectator lons</u>: lons that do not react in solution; they remain as ions

 $Pb(NO_3)_2 (aq) + 2KI (aq) \rightarrow PbI_2 (s) + 2KNO_3 (aq)$ $Pb^{2+}(aq) + 2NO_3^- (aq) + 2K^+ (aq) + 2I^- (aq) \rightarrow PbI_2 (s) + 2K^+ (aq) + 2NO_3^- (aq)$ $Net \text{ ionic equation: } Pb^{2+} (aq) + 2I^- (aq) \rightarrow PbI_2 (s) \xrightarrow{42}$

Writing Net Ionic Equations

 $Na_2CO_3(aq) + PbCl_2(aq) \rightarrow 2 NaCl(aq) + PbCO_3(s)$

Steps:

- 1. Write ions (all ions = total ionic equation)
- 2. Cross off species that are the same on both sides
- 3. Write net ionic equations using only species that have changed (changed: aq on one side, s, l, or g on the other)

$$Pb^{2+}(aq) + CO_3^{2-}(aq) \rightarrow PbCO_3(s)^{43}$$

A note for the homework:

Weak acids are written as undissociated in total & net ionic equations.

$$3\operatorname{Ba}^{2^+}(aq) + 6\operatorname{OH}^-(aq) + 2\operatorname{H}_3\operatorname{PO}_4(aq) \rightarrow \operatorname{Ba}_3(\operatorname{PO}_4)_2(s) + 6\operatorname{H}_2\operatorname{O}(l)$$

For exams, you will not need to write net ionic equations for weak acid dissociation this semester because weak acids are covered in depth in CHM 112.

	Solubility Rules for ions ility rules classify compounds into those that are ly soluble and those that are usually insoluble.	
Soluble	Ammonium (NH_4^+) Hydrogen (H^+) AlwaysAlkali metals (group 1A)solubleNitrate (NO_3^-) Perchlorate (CIO_4^-) & Chlorate (CIO_3^-) Acetate (CH_3COO^-)	
Usually Soluble	Halides (F ⁻ ,Cl ⁻ ,Br ⁻ ,& l ⁻) Exceptions (insoluble if with): Pb ²⁺ , Hg ₂ ²⁺ , Ag ⁺	
Joinine	Sulfate (SO ₄ ²⁻) Pb^{2+} , Hg_2^{2+} , Ag^+ , Ba^{2+} , Ca^{2+} , Sr^{2+}	
Sparingly Soluble (Insoluble)	Sulfide (S2-) Hydroxide (OH-) Oxide (O2-)Exceptions: soluble if with any of the cations listed in the always soluble boxCarbonate (CO32-) Phosphate (PO43-) Chromate (CrO42-)Exceptions: soluble if with any of the cations listed in the always soluble box	

Determining Products of Precipitation Reactions FeCl₃ (aq) + Na₂CO₃ (aq) \rightarrow ?

- 1. Divide reactant compounds into cations & anions
- 2. Match cation from one salt with anion from other salt Note: Always keep the metal on the left in salts!
- 3. Balance charges in salts to generate formulas
- 4. Write balanced equation
- 5. Use solubility rules to predict solubility of products

2 FeCl₃ (aq) + 3 Na₂CO₃ (aq) \rightarrow 6 NaCl (aq) + Fe₂(CO₃)₃ (s)⁴⁶

Single Displacement Reactions $A + BC \rightarrow AB + C$

 $1+1_{-}$

Hydrogen Displacement

$$\overset{0}{\text{Ba}} \overset{1+2-}{(s)} \overset{0}{\to} \overset{2+2-1+}{\text{H}_2(g)} \overset{2+2-1+}{\to} \overset{0}{\text{H}_2(g)} \overset{2+2-1+}{\to} \overset{0}{\text{H}_2(g)} (\text{aq})$$

Metal Displacement

⁰ 1+ 1- 0 2+ 1-
Cu (s) + 2AgCl (aq)
$$\rightarrow$$
 2Ag (s) + CuCl₂ (aq)

Halogen Displacement: $F_2 > CI_2 > Br_2 > I_2$

0 1+ 1- $Cl_2(g) + 2KBr(s) \rightarrow Br_2(g) + 2KCl(s)$

> Production of **Bromine Gas**

Relative Activites with Water & Acid

Li→Li ⁺ + e^- K→K ⁺ + e^- Ba→Ba ²⁺ + 2 e^- Ca→Ca ²⁺ + 2 e^- Na→Na ⁺ + e^-	React with cold water to produce H ₂
$\begin{array}{c} Mg \! \rightarrow \! Mg^{2+} + 2e^- \\ AI \! \rightarrow \! AI^{3+} + 3e^- \\ Zn \! \rightarrow \! Zn^{2+} + 2e^- \\ Cr \! \rightarrow \! Cr^{3+} + 3e^- \\ Fe \! \rightarrow \! Fe^{2+} + 2e^- \\ Cd \! \rightarrow \! Cd^{2+} + 2e^- \end{array}$	React with steam to produce H ₂
$Co \rightarrow Co^{2+} + 2e^{-}$ Ni→Ni ²⁺ + 2e ⁻ Sn→Sn ²⁺ + 2e ⁻ Pb→Pb ²⁺ + 2e ⁻	React with acids to produce H_2
	Do not react with water or acids to produce H_2

Silver Plating

Activity Series

Na → Na ⁺ + <i>e</i> ⁻	React with cold water to produce H ₂ *Also react w/ steam & acid
$\begin{array}{l} Mg \! \rightarrow \! Mg^{2+} + 2e^- \\ AI \! \rightarrow \! AI^{3+} + 3e^- \\ Zn \! \rightarrow \! Zn^{2+} + 2e^- \\ Cr \! \rightarrow \! Cr^{3+} + 3e^- \\ Fe \! \rightarrow \! Fe^{2+} + 2e^- \\ Cd \! \rightarrow \! Cd^{2+} + 2e^- \end{array}$	React with steam to produce H ₂ *Also react w/ acid
$Co → Co^{2+} + 2e^{-}$ Ni → Ni ²⁺ + 2e ⁻ Sn → Sn ²⁺ + 2e ⁻ Pb → Pb ²⁺ + 2e ⁻	React with acids to produce H ₂
$H_2 \rightarrow 2H^+ + 2e^-$ $Cu \rightarrow Cu^{2+} + 2e^-$ $Ag \rightarrow Ag^+ + e^-$ $Hg \rightarrow Hg^{2+} + 2e^-$ $Pt \rightarrow Pt^{2+} + 2e^-$ $Au \rightarrow Au^{3+} + 3e^-$	Do not react with water or acids to produce H ₂

Reducin

Reactivity of 2 metals Higher metal replaces lower metal Higher metal becomes cation Lower metal will be free metal $Pb(s)+2CuF(aq) \rightarrow PbF_2(aq) + Cu(s)$ $Cu(s) + PbF_2(aq) \rightarrow NR$ Reactivity with water $Ca(s)+2H_2O(1) \rightarrow Ca(OH)_2(aq)+H_2(g)$ $Mg(s) + 2H_2O(g) \rightarrow Mg(OH)_2(aq) + H_2(g)$ $Fe(s) + H_2O(1) \rightarrow NR$ Reactivity with acid

 $Pb(s)+2HCl(aq) \rightarrow PbCl_{2}(aq) + H_{2}(g)$ $Pt(s)+2HCl(aq) \rightarrow NR_{48}$

Determining Products of Single Displacement Reactions

- 1.) Ba + CrCl₃ \rightarrow
- 2.) Ag + CrCl₃ \rightarrow
- 3.) F_2 + CrBr₃ →
- 4.) Zn + HCl →
- 5.) Zn + H₂O (g) →
- 6.) Zn + H₂O (l) →

Must Know These Diatomic Molecules: H₂, F₂, Cl₂, Br₂, l₂, N₂, O₂ What is the mass % CI in a sample of unknown composition? 1. Dissolve known mass of an unknown sample in water. 0.5662g M_xCl_v dissolved in water $\rightarrow xM^+ + yCl^-$ 2. React unknown with Ag⁺ to form a precipitate.

Solution Based Experiments: Gravimetric Analysis

- $Aq^{+}(aq) + CI^{-}(aq) \rightarrow AqCI(s)$
- 3. Filter, dry, & weigh precipitate. 1.0882g AgCl(s) recovered
- 4. Use stoichiometry to determine moles and mass of chlorine, then determine %Cl.

