

10.0 g + excess → ? g

Chemical Reactions

Chemical Equations

Chemical Equations

- Shorthand description of a chemical reaction
 - Like a recipe!

- Symbols & formulas = elements & compounds
- Letters in parentheses = phases of matter

 $\mathsf{H}_2(\mathsf{g}) \,+\, 2\mathsf{C}(\mathsf{s}) \,+\, \mathsf{Cl}_2(\mathsf{g}) \,\rightarrow\, \mathsf{C}_2\mathsf{H}_2\mathsf{Cl}_2(\mathsf{g})$

Chemical Equations

 $H_2(g) + 2C(s) + CI_2(g) \rightarrow C_2H_2CI_2(g)$

<u>Reactants</u>: Starting substances on left: H₂, C, Cl₂ <u>**Products:**</u> Substances formed on right: C₂H₂Cl₂

Values in front of symbols: Stoichiometric coefficients Coefficients = # moles of that substance \rightarrow If there is no #, the coefficient is 1

+ sign: Think of it as "and"; not mathematical adding!

Arrow (produces, yields) – change from reactants to products \rightarrow Shows the direction of reaction (\rightarrow , \leftarrow , \leftrightarrow , \longleftrightarrow ,)

(g), (s), (l), (aq): chemical phase: gas, solid, liquid, aqueous Aqueous = dissolved in water

Remember naming......

One mole of solid barium hydroxide reacts with two moles of aqueous nitric acid (HNO₃) to form one mole of aqueous barium nitrate and two moles of liquid water.

Law of Conservation of Mass Total mass is constant during a chemical reaction Mass of reactants must exactly match mass of products

2lbs potatoes + 3 ounces milk + 1 ounce butter = 2 lbs 4 oz mashed potatoes

Called mass balance

11.1g $H_2(g) + 88.9g O_2(g) = 100.0g H_2O(I)$

Matter cannot be created or destroyed in chemical reactions!

Chemical Equations must be balanced!

Rules & Hints For Balancing Chemical Equations Cannot make something out of nothing!

- ONLY COEFFICIENTS CAN BE CHANGED!!! $H_2O \neq H_2O_2$
- If an element(s) is present in just 1 compound on each side of the equation, balance that element(s) <u>first</u>.
- Balance <u>free</u> elements <u>last</u>. (O₂, C, H₂, etc.)
- Fractions can be cleared at any time by multiplying all coefficients by a common multiplier (often denominator)

 $2 \left[C_4H_{10} + 13/2 \text{ } O_2 \rightarrow 4 \text{ } CO_2 + 5 \text{ } H_2\text{O}\right] \rightarrow 2 \left[C_4H_{10} + 13 \text{ } O_2 \rightarrow 8 \text{ } CO_2 + 10 \text{ } H_2\text{O}\right]$

 Groupings of atoms (such as in polyatomic ions) may remain unchanged. In such cases, you can balance these groupings as a unit.

Balancing Chemical Equations Starting – Unbalanced (no coefficients): 1.) $H_2 + O_2 \rightarrow H_2O \mid 2.$ $C_2H_5O_2 + O_2 \rightarrow CO_2 + H_2O$

Balanced: 1.) $2H_2 + O_2 \rightarrow 2H_2O$ 2.) $4C_2H_5O_2 + 9O_2 \rightarrow 8CO_2 + 10H_2O$

Some Basic Types of Chemical Reactions

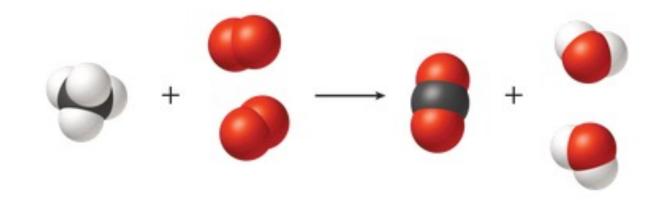
Combination (aka Synthesis): Putting things together

Two or more reactants combine to form a single product

→ $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

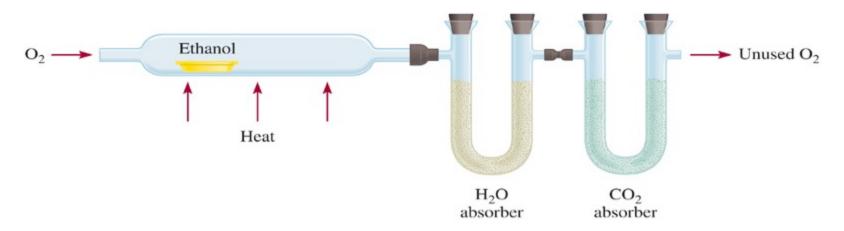
Decomposition: Breaking things apart

Two or more products form from a single reactant



Combustion: Reacting with oxygen

A substance burns in the presence of oxygen


Combustion Analysis

$CH_4(g) + 2O_2(g) \rightarrow 2H_2O(I) + CO_2(g)$

Determination of Empirical Formulas by Elemental Analysis (Combustion)

12

- Burn measured amount of compound with excess O_2 . • $C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O + Unused O_2$
- Measure mass of products (must know what they are)
- Use mass of products to determine moles & mass of each element present
 - CO₂ and H₂O contain all C and H atoms
 - **Determine amount of oxygen by difference**
- If know molar mass can determine molecular formula

Determining Empirical Formula from Experiment A 0.595g sample of a CHO compound burns in O₂ to produce 1.188g CO₂ and 0.486g H₂O. What is the empirical formula? $C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O + Unused O_2$ MM CO₂ = 44.01 g/mol Determine Moles & Mass of C from CO₂

Determine Moles & Mass of H from H₂O

Determine Mass & Moles of O from what is left

Divide by smallest # moles to get formula: C_2H_4O

What If You Don't get Whole Numbers?

Multiply Results from Empirical Formula by the smallest possible value to get whole numbers:

$$C = 1.5 \times 2 = 3$$

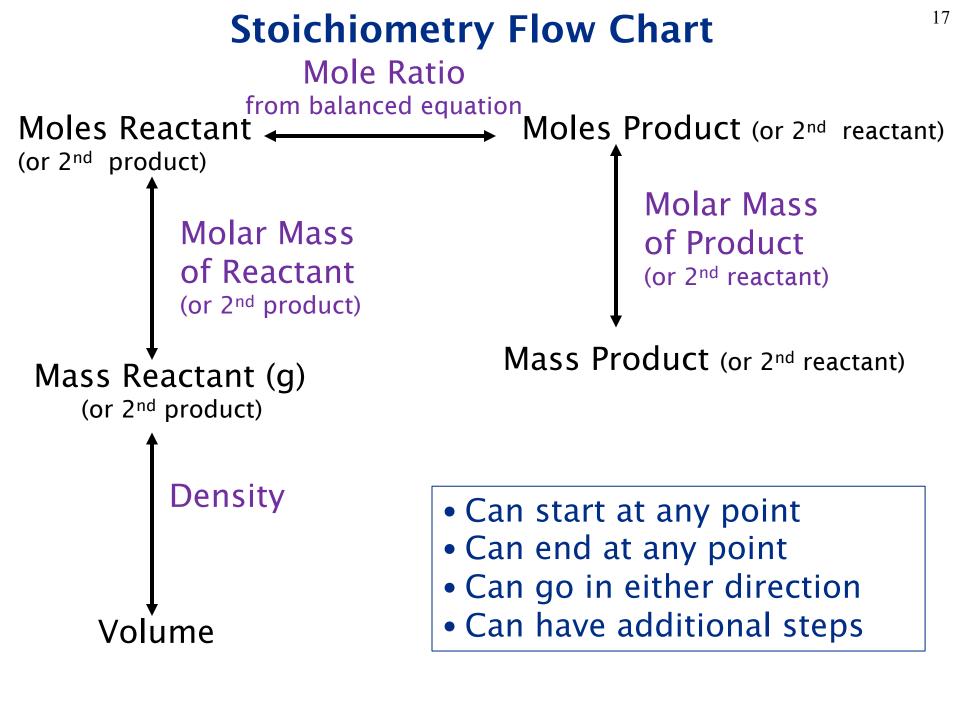
- $O = 1 \times 2 = 2$
- $H = 3 \times 2 = 6$

Formula = $C_3H_6O_2$

Amounts of Reactants and Products: Stoichiometry

Calculations based on chemical reactions How much do you need to make what you want?

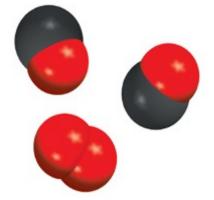
Stoichiometry: Mole Ratios in Chemical Reactions



3 eggs and 2 cups of flour react to make one cake ratio: 3:2:1

 $2C(s) + 1CI_2(g) + 2H_2(g) \Rightarrow 1C_2H_4CI_2(g)$

2 moles of graphite (carbon), 1 mole of chlorine gas, and 2 moles of hydrogen gas react to form 1 mole of dichloroethane


Mole ratio: 2:1:2:1

What is the mass of CO_2 produced when 10.7g of O_2 reacts with CO to form CO_2 ? Write and balance the equation:

2CO (g)+ $1O_2(g) \rightarrow 2CO_2(g)$

Calculate moles of O_2 (31.9988 g/mol) in 10.7g of O_2 . (0.33439mol O_2)

Calculate moles of CO_2 from mole ratio. (0.668775mol CO_2)

Calculate grams CO₂ (44.0098g/mol) from moles CO₂. (29.4g CO₂)

Limiting Reagents & Reaction Yield:

- Limiting Reagent: Reactant that runs out first!
 - Determines how much product you can make
 - Find by calculating the moles of 1 product from each given amount of reactant
 - Limiting reagent is the reactant producing the <u>smallest</u> amount of product
- Theoretical Yield:
 - <u>Max</u> amount of product that you can make
 - Based on limiting reagent!
 - Generally reported in grams

$Sb_4O_{10} + 6H_2O \rightarrow 4H_3SbO_4$

If you start with 3.0 moles Sb_4O_{10} and 8.0 moles of water, what is your limiting reagent?

 Sb_4O_{10} : 3.0 moles Sb_4O_{10} (4 moles $H_3SbO_4/1$ mol Sb_4O_{10}) = 12 mol H_3SbO_4

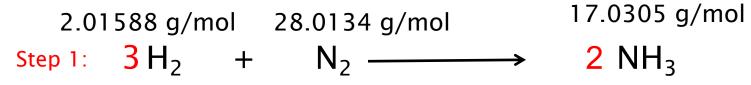
 H_2O : 8.0 moles H_2O (4 moles $H_3SbO_4/6$ mol H_2O) = 5.3 mol H_3SbO_4

 $LR = H_2O$

169.87 g/mol 27.026 g/mol	133.886 g/mc	22
$AgNO_3 + HCN \longrightarrow$	AgCN	+ HNO ₃
If you make silver cyanide, which is used in electroplating, from 20.0 g of silver nitrate and 15.0 g of hydrogen cyanide gas, what is your limiting reagent? What is your theoretical yield of AgCN?		
Step 1: Make sure equation is balanced. Step 2: Moles of reactants – for limiting need both!	reagent,	Why might you want to make either silver nitrate or hydrogen cyanide your limiting
Step 3: Cross the mole bridge. Limiting produces smallest amount of pro	-	reagent?
produces smallest amount of pre	Judet: (LK – Agn	

Step 4: Use the limiting reagent to determine the mass of AgCN. (15.8 g)

Yields of Chemical Reactions


Reactions rarely produce maximum product

- a. Impure reactants
- b. Incomplete reaction
- c. All product not fully recovered
- d. Side reactions may occur

Actual yield: Yield recovered during experiment

Theoretical yield: Yield calculated from limiting reagent

Percent yield =
$$\begin{pmatrix} Actual yield \\ Theoretical yield \end{pmatrix} X 100$$

If you start with 4.00 g of hydrogen gas and 22.00g of nitrogen gas, and make 18.5 g of ammonia, what is your percent yield?

Step 2:

Step 3:

Step 4:

Step 5:

82.1 % yield