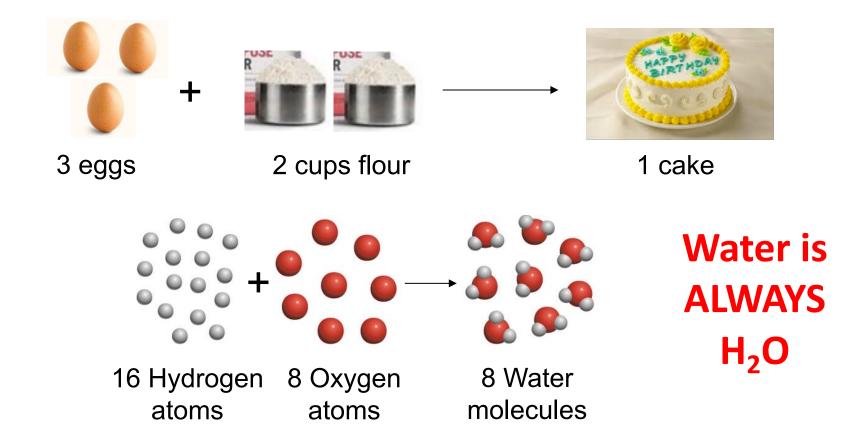

Chapter Five Ionic & Covalent Compounds

Types of Compounds

Compound: 2 or more elements chemically combined

lonic:

- Cation + Anion
- Form from transfer of electrons
- Often metal + nonmetal
 - Elements that are very "different"
 - Opposite sides of Periodic Table
- Ex. NaCl (sodium chloride)
- Contain specific ratios of ions but no specific number of ions


Covalent:

- Form by sharing electrons
- Contain atoms, not ions
- Often nonmetal + nonmetal
 - Elements that are "similar"
 - Same side of Periodic
 Table
 - Hydrogen is a nonmetal
- Ex. CO₂ (carbon dioxide)
- <u>Molecules</u> contain specific numbers of atoms.

Law of Definite Proportions

A compound will always have same chemical composition

• Each product is formed from definite proportions of reactants

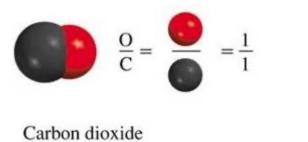
• Same mass proportions & atomic ratios of elements present

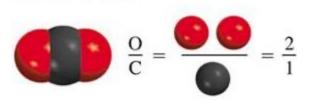
Law of Multiple Proportions

If the same two elements can combine to form more than one compound:

• The masses of one element combine with a fixed mass of the second element.

• The combination is in a ratio of **small whole numbers**.


Open face sandwich 1 bread + 1 filling 1:1 ratio


Regular sandwich 2 bread + 1 filling 2:1 ratio

Carbon monoxide

Compounds are formed when atoms of different elements unite in fixed proportions

Chemical Formulas

Represent chemical composition (atomic ratios)

- Empirical: Ratio of atoms (NH₂ instead of N₂H₄)
 Can use for ionic or covalent compounds
- Molecular: Actual # of atoms (N₂H₄)
 Only use for covalent compounds. Molecule = covalent
- **Structural**: Shows how atoms are connected in <u>molecules</u>

	Hydrogen	Water	Ammonia	Methane
Molecular formula	H_2	H_2O	NH ₃	CH_4
Structural formula	н—н	н-о-н	H—N—H I H	$\begin{array}{c} \mathbf{H} \\ \mathbf{H} - \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{array}$
Ball-and-stick model	0-0			

Chemical Formulas

Symbols tell you what

elements are present

 $Fe(CO_3)_2$

Subscripts tell you how many atoms/ions of each element are present

Parentheses show that a subscript belongs to a group of elements, not a single element (distribute the 2 to oxygen & carbon)

Lewis Dot Symbols

Consists of atomic symbol surrounded by 1 dot for each valence electron in the atom

> Only used for main group elements # valence electrons = group number

۰н	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	He:
۰Li	•Be •											• B •	٠ċ٠	·N·	·ö·	÷F·	:Ne:
•Na	·Mg·	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	· Ål ·	· și ·	٠ÿ٠	·s·	:ä·	:Är:
٠к	۰Ca・											٠Ġa٠	·Ge·	·As·	·Se·	:Br•	:Ķr:
• Rb	• Sr •											· in ·	• Sn •	· Sb ·	·Ťe·	:ï·	:xe:
٠Cs	• Ba •											٠ ti ·	·Pb·	· Bi ·	· Po·	: Ăţ ·	:Řn:
۰Fr	•Ra•																

Drawing Lewis Dot Symbols

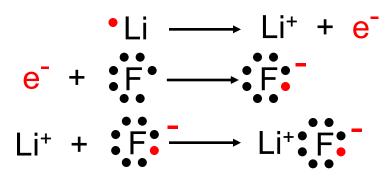
S

Cl

Formulas & Names of Ionic Compounds

Sodium chloride

Ionic Bonding


Electrons are transferred from one atom to another forming charged atoms called **ions**

- Metal atoms: Lose electrons to form positive cations
- Nonmetal atoms: Gain electrons to form negative anions

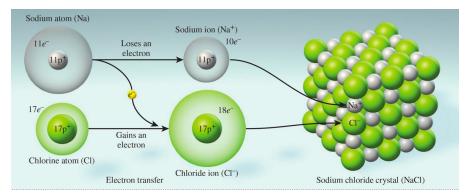
Electrostatic force (+ & - attraction) bonds ions into an ionic compound (ionic bond)

- Form an ionic salt with repeating structure: NaCl, LiF
- Ionic Bonds follow the octet rule
- Atoms lose or gain valence e- to make an octet (8e-)
- 8 valence e- = Noble gas configuration

$$1s^{2}2s^{1} \rightarrow 1s^{2}$$
$$1s^{2}2s^{2}2p^{5} \rightarrow 1s^{2}2s^{2}2p^{6}$$

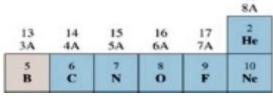
Ionic Compounds (salts)

11


Cations & Anions bind together to form crystals

The net charge on the compound is 0

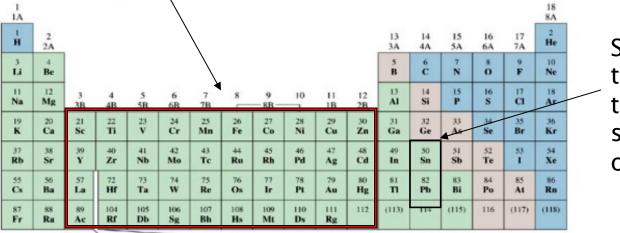
- Positive & negative charges are balanced: number of positive charges = number of negative charges
- Not always a 1:1 ratio of ions depends on charge


Large network of ions

- Not distinct individual units
- Positive charge of cation attracts all nearby anions
- Negative charge of anion attracts all nearby cations
- Energy required to convert an ionic solid into ions in the gas phase is known as lattice energy

Using the Periodic Table to Predict Ionic Charge (Main Group Elements Only)

Goal: Get 8 valence electrons ("full")


- electrons in "outermost" energy level
- "A" column number tells number of valence electrons
- Noble gases (column 8A/18) already have 8 generally no charge
- Can gain or lose electrons to get 8 generally do what is easier
- Electrons are negative \rightarrow gain electrons = negative charge!

The correct charge is <u>usually</u> the smallest number

- Left Side (metals): K^{1+} or K^{-7} Mg²⁺ or Mg⁶⁻
- Right Side (nonmetals): O^{6+} or O^{2-} F^{7+} , or F^{1-}

Ionic Bonding: Ca & Cl

Charges on Transition & Other Multi-charge Metals¹⁴

Sn & Pb are the "others" that you will see most often

- Become cations
- Charge cannot always be predicted by column
- Often have more than one charge (also possible for some main group elements)
 - Designated with a Roman Numeral
 - Iron (III) = Fe^{3+} ; Iron (II) = Fe^{2+}
 - Roman numerals required in names of ionic compounds if cation can have more than one charge
 - Iron (III) oxide
 - Copper (II) chloride

Polyatomic lons

Charged molecules
Lose or gain electrons as a group
Charge is spread over 2 or more atoms

Memorize the following polyatomic ions!

NH_4^+	Hydronium	H_3O^+
PO ₄ ³⁻	Acetate	CH ₃ COO ⁻
OH-	Nitrate	NO_3^-
CN⁻	Sulfate	SO ₄ ²⁻
MnO ₄ -	Chlorate	CIO ₃ -
CO ₃ ²⁻	Perchlorate	CIO ₄ -
	PO ₄ ³⁻ OH ⁻ CN ⁻ MnO ₄ ⁻	PO_4^{3-} Acetate OH^- Nitrate OH^- Sulfate MnO_4^- Chlorate

Formula of an Ionic Compound must give an overall charge of zero!

- Al & O
- Ca & Br
- Na & CO₃
- Ca & NO₃

Pb⁴⁺ & O

Names of lons and lonic Compounds¹⁷ Naming lons:

- For cations: add the word ION after element name
- Na = sodium
 - In col 1, so loses 1 e⁻
 - Na+ =

- Al = aluminum
 - In col 13, so loses 3 e⁻
 - A|³⁺ =
- For anions: change the element name ending to -ide first
- Cl = chlorine
 - In col 17, so gains 1e⁻
 - Cl⁻ =

- O = oxygen
 - In col 16, so gains 2 e
 - O^{2⁻} =

Naming Ionic Compounds (ie salts):

- Write the name of the cation followed by the name of the anion.
- If the cation can have more than one charge, include a Roman Numeral representing the charge after the name of the cation.

Na & Cl

```
Net Charge: (+1) + (-1) = 0
Chemical Formula is NaCl
```

Na = sodium Cl = chloride Name = Sodium chloride

Al & O

Net Charge: 2(+3) + 3(-2) = 0Chemical Formula is Al_2O_3

AI = aluminum

O = oxide

Name = Aluminum oxide

Fe & S Fe = iron -> 2 possible charges, +2 & +3 S = Sulfide -> charge is -2

If Iron is +2 Net Charge: (+2)+(-2) = 0 Chemical Formula is FeS Name = Iron (II) sulfide If Iron is +3 Net Charge: 2(+3)+3(-2) = 0Chemical Formula is Fe_2S_3 Name = Iron (III) sulfide

Naming Ionic Compounds

1.) K₂O
2.) CaF₂
3.) KF
4.) Ca(NO₃)₂
5.) K₃PO₄

If the formula contains a cation that can have more than one charge, you need to determine the charge based on the anion & include it as a Roman Numeral.

6.) PbCl₂

7.) Fe₂O₃

Formulas & Names of Covalent Compounds

CO₂ = Carbon Dioxide

Covalent Bonding

Electrons are shared between atoms, forming a covalent bond

- Elements are similar so they are not able to fully pull electrons away from each other
- Atoms remain uncharged, but "gain" additional valence electrons to have an octet
- Number of shared electrons can vary depending on the number needed for each atom to gain an octet

Often results in formation of individual units called molecules

$$H^{\bullet} + \bullet CI^{\bullet} \longrightarrow H \bullet CI^{\bullet} = Molecule of HCI$$

 Sometimes large networks similar to ionic crystals can be formed – diamonds are one example

Molecular Compounds

Molecules contain specific numbers of atoms

- The number and type of each atom is shown in the molecular formula
- Diatomic molecules 2 atoms
 - Homonuclear same element not a compound (just an element)
 - Heteronuclear different elements a compound

• Polyatomic molecules - more than 2 atoms

Names of Binary <u>Molecules</u> (2 Elements, Covalent)²³

Names and formulas have 2 parts, 1 for each element:

Dinitrogen tetroxide ------ N₂O₄

1st word is 1st element name ----- N = Nitrogen

 2^{nd} word is 2^{nd} element name \rightarrow change ending to "-ide" ------ O = Oxygen \rightarrow Oxide

Formula: Subscripts = # of atoms ----- N_2O_4

Name: Prefix = # of atoms ------ <u>Dinitrogen tetr</u>oxide

Do not include a prefix for the <u>first element</u> if there is only one atom

Ex: $CO_2 = Carbon dioxide$ (not monocarbon dioxide) CO = Carbon monoxide

Need to know prefixes up to 10

TABLE 5.5	Greek Prefixes		
Prefix	Meaning	Prefix	Meaning
Mono-	1	Hexa-	6
Di-	2	Hepta-	7
Tri-	3	Octa-	8
Tetra-	4	Nona-	9
Penta-	5	Deca-	10

Note that the o or a at the end of the prefix is often dropped when the element begins with a vowel.

- Monoxide, not monooxide
 - Tetroxide, not tetraoxide

Names & Formulas of Binary Molecules

1.) N₂O

2.) SCI₃

3.) P₂O₅

4.) nitrogen dioxide

5.) dinitrogen tetrasulfide

Acids and Bases

<u>Acid</u>

- Arrhenius: Compound ionizes in H₂O to form H⁺ & anions
 - Name by changing anion -ide ending to -ic acid
 - Add hydro to acids with HX formula (X=halogen; col.17)
 ex: HCI = <u>Hydro</u>chloric acid
- Bronsted acids: H^+ grabs H_2O to form H_3O^+ in water

<u>Base</u>

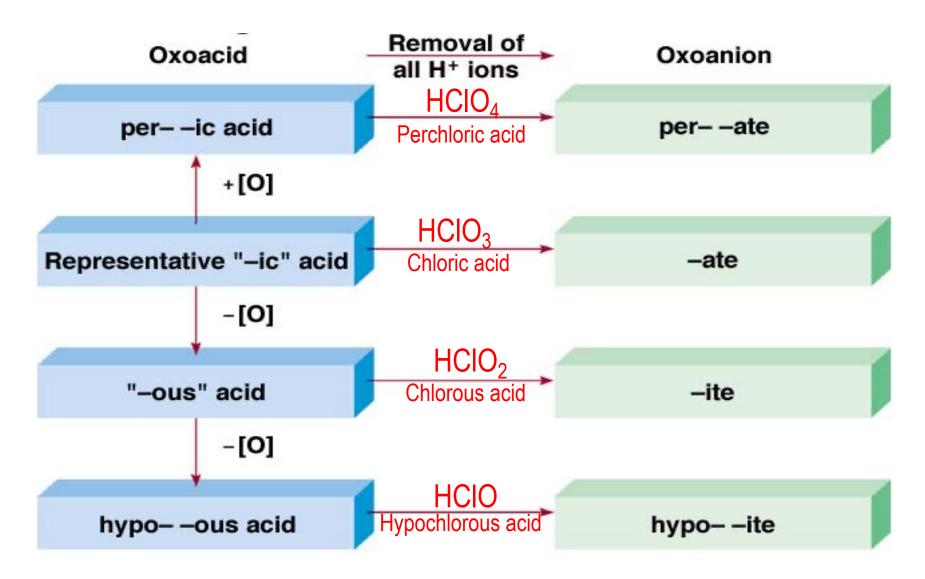
- Arrhenius: Compound ionizes in H_2O to form OH^2 & cations
 - Name as salts: All hydroxide salts are considered bases
- Bronsted base: Pulls H+ from H₂O so NH₃ is a base: H₂O + NH₃ \Rightarrow OH⁻ + NH₄⁺ \Rightarrow NH₄OH

<u>Neutralization</u>

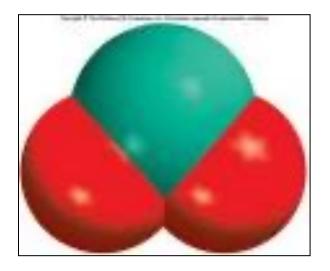
Reaction between acid & base – form water & a salt
 H⁺ + OH⁻ ⇒ H₂O and cation + anion ⇒ salt
 HCl + NaOH ⇒ H₂O + NaCl (aq)

Common acids and bases Be able to recognize & associate formula with name

Acids


Hydrochloric Acid:HClSulfuric Acid: H_2SO_4 Chloric Acid:HClO3Perchloric acid:HClO4

Carbonic Acid: Nitric Acid: Phosphoric Acid: Acetic Acid: H_2CO_3 HNO_3 H_3PO_4 CH_3COOH


Bases

Sodium hydroxide: NaOH Potassium hydroxide: KOH Ammonium hydroxide: NH_4OH (ammonia, NH_3 , in H_2O) Lithium hydroxide: LiOH

Naming Oxoacids and their Anions: <u>Reference Only</u>

Molar Mass & Mass Percent Calculations

SO₂: 64.0648g/mol

49.9476% oxygen 50.0524% sulfur

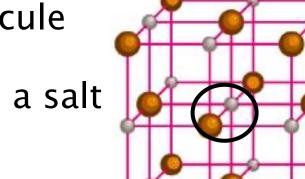
Molar Mass The mass of one mole of a substance

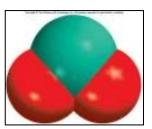
Units of g/mol

To calculate for a compound:

- Find atomic mass of each element $30_2 mole$ \rightarrow located on Periodic table (often below symbol)
- Multiply atomic mass of element by subscript, then add all elements together.

= 22.99 g/mol


= 64.07 g/mol

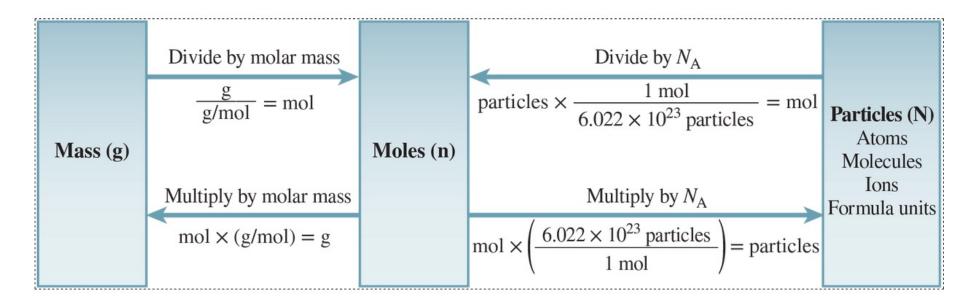

- Molecular mass: mass of molecule
 → include every atom
- Formula mass: mass of ions in a salt
 → use smallest ratio

Examples:

- 1 mol Na
- 1 mol SO_2
- 1 mole NaCl = 58.44g/mol

NaCl – ionic compound

Calculating Molar Mass for Compounds


31

1.) NaCl

2.) SO₂

3.) Pb(NO₃)₂

Mole-based Calculations (Mass/Mole/Particle Conversions) Molar Mass (*M*): grams/mol – from Periodic Table! Avogadro's Number N_a: 6.022x10²³ particles/mol

Same as for elements, but with molar mass of **compounds**

moles \rightarrow mass What is the mass, in grams, of 0.557 mol K₂O? (52.5 g)

mass \rightarrow # moles How many moles are there in 25.64 g of K₂O? (0.2722 mol) # moles \rightarrow # particles How many molecules are in 2.6 moles of CO₂? (1.6 x 10²⁴ molecules)

moles \rightarrow # particles How many oxygen atoms are in 4.57 moles of SO₃? (8.26x10²⁴ atoms O)

moles \rightarrow # particles How many ions are in 2.6 moles of NaCl? (3.1 x 10²⁴ ions; 1.6x10²⁴ Na⁺ ions & 1.6x10²⁴ Cl⁻ ions)

Combined!

How many atoms are there in 2.578 g of SO₂ (MM = 64.065 g/mol)? Mass \rightarrow Moles \rightarrow Molecules \rightarrow Atoms

A: 7.270 x 10²² atoms

Percent Composition of Compounds by Mass (Mass % Compostion)

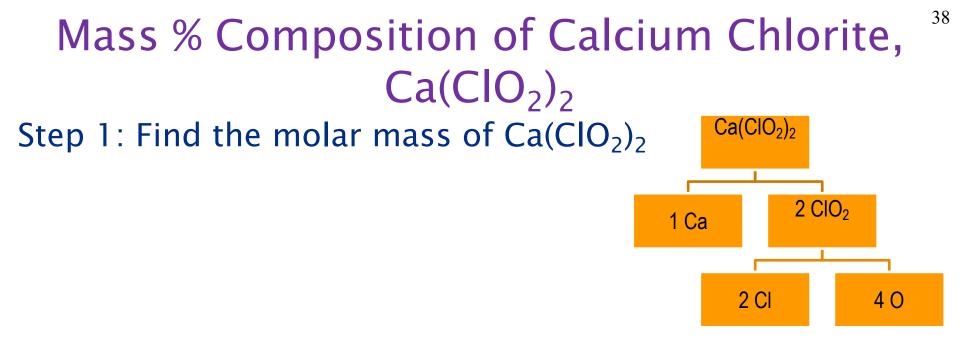
- General idea for percentages is "part / total"
- For mass %: mass of each element in the compound divided by the total mass of the compound
- Units should be the same for both values (usually g)

To Determine the Mass % of a Compound:

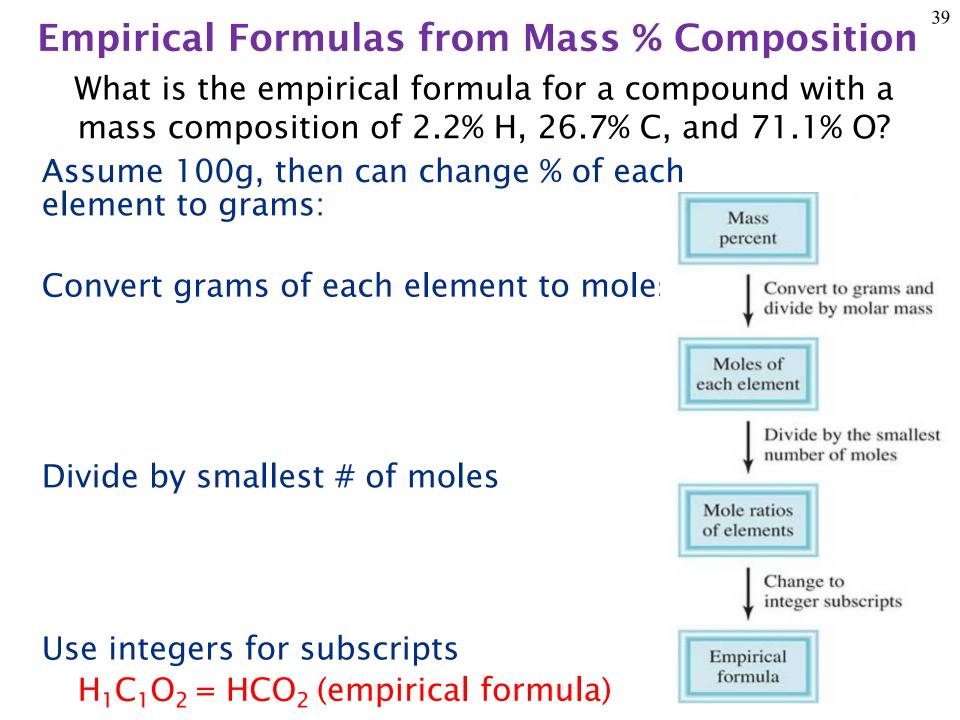
- Assume 1 mole of compound.
 This will make subscripts = # moles of each element
- Calculate molar mass of compound.
- Calculate mass of each element based on subscripts.
- For each element, divide mass by molar mass of compound

Mass % Compostion

3 pieces Pepperoni (Pe) – 10. g per piece 2 pieces Cheese (Ch) – 9.0 g per piece 5 pieces Veggie (Ve) – 12 g per piece


 $Pe_3Ch_2Ve_5$

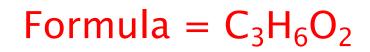
Total: 10 slices, 108 g


Percent by slice:

Pe: (3/10)*100 = 30% Ch: (2/10)*100 = 20% Ve: (5/10)*100 = 50% Percent by mass:

Pe: (30./108)*100 = 27% Ch: (18/108)*100 = 17% Ve: (60./108)*100 = 56%

Step 2: Divide each elemental mass by the molar mass of $Ca(CIO_2)_2$ (Total should equal approximately 100%)



What If You Don't get Whole Numbers?

Multiply Results from Empirical Formula by the smallest possible value to get whole numbers:

- C = 1.5
- 0 = 1
- H = 3

Molecular Formula from Mass % Composition

What is the molecular formula for a compound with a mass composition of 2.2% H, 26.7% C, and 71.1% O, and a molar mass of 135.053g/mol?

Follow steps to get empirical formula: From previous slide: HCO₂

Calculate formula mass from empirical formula:

Divide molar mass by formula mass:

Multiply subscripts by value from previous step: