
Chapter Ten

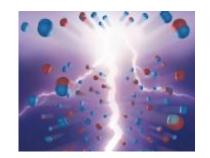
Energy Relationships in Chemical Reactions

Energy (U): Capacity to Do Work

Some types of energy:

- Radiant
 - Energy from the sun
- Nuclear
 - Energy stored in the nucleus of an atom

- **Energy** = force x distance
 - $= N \times m$
 - $= kg m^2 / s^2$
 - $= kg m^2 s^{-2}$
 - = Joule (J)



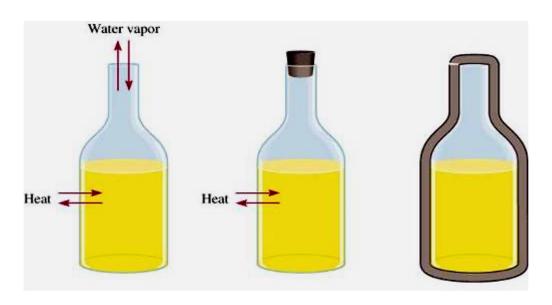
Thermal

- Energy associated with temperature
- Type of <u>kinetic energy</u>: due to molecular movement

Chemical

- Energy stored in chemical bonds
- Type of <u>potential energy</u>: due to position of an object

Thermochemistry


Study of heat change in chemical reactions

System: The part of the universe being studied

Open: Energy & matter exchange with surroundings

Closed: Only energy exchange with surroundings

Isolated: No energy or matter exchange - rare

Surroundings: Part of the universe not being studied

Heat Transfer in a System

Heat (q): Transfer of energy due to temp. difference

Exothermic Reaction: System gives off heat (<u>Ex</u>iting)

Ex: Methane Burning: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Bonds stronger in $CO_2 + H_2O$ than in $CH_4 + O_2$

- Energy is absorbed when bonds break & released when bonds form
- In this case more energy released than absorbed
- Heat goes from system to surroundings

Endothermic Reaction: System gains heat (<u>En</u>tering)

Ex: Ice Melting: H_2O (s) $\rightarrow H_2O$ (l)

- Need energy to disrupt attractions between H₂O molecules
- Heat goes from surroundings into the system

Thermodynamics – Study of the conversions between heat & energy

State vs. Path Functions

State of a system:

 Δ = change

- Describes specific conditions/macroscopic properties
- Composition, temp., pressure, energy, volume ex: Potential energy of ball at the top of the mountain

State functions:

Properties defined by ∆ = final - initial values only
 ⇒ process doesn't matter

ex: Height of mountain

Path functions:

 change in values varies by process ex: the actual distance travelled by ball on its trip to the bottom of the mountain.

First Law of Thermodynamics Energy can be converted from 1 form to another but cannot be created or destroyed

 $\Delta U_{\text{system}} = U_{\text{final}} - U_{\text{initial}}$

Internal Energy of System: $U_{system} = U_{kinetic} + U_{potential}$

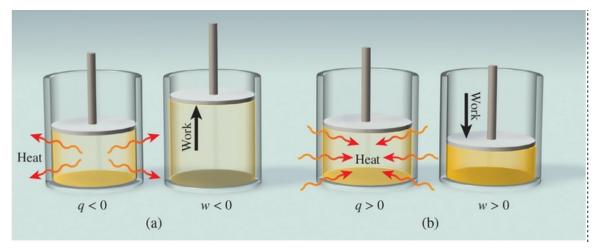
Kinetic energy: Amount of molecular motion Associated with temperature

Potential energy: Energy stored in bonds
Strength of chemical bonds

When studying a reaction, cannot separate kinetic & potential energy - measure total energy instead

For chemical reactions: $\Delta U_{reaction} = U_{products} - U_{reactants}$

Internal Energy & Enthalpy


Bettmann/Getty Images

Internal Energy: Work and Heat

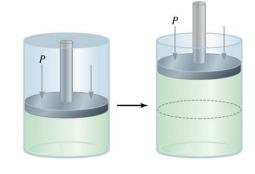
Energy transfer – caused by changes in heat & work in a system

 $\Delta U_{\text{system}} = q + w$ (where q = heat) Work (w) = force x distance = $-P\Delta V$

Work is needed to expand a system against its surroundings Negative work (-w): System loses energy to surroundings Positive work (+w): System gains energy from surroundings

Work (w) =
$$-P\Delta V$$

 $\Delta V = V_f - V_i$


For this situation: $+ \Delta V$

Therefore: -W

1 L x atm = 101.32 J

Work and Heat

A gas expands in volume from 2.000 L to 4.000 L at STP. 350.0 J of energy are needed to maintain the new conditions.

a. Calculate work (J) done against a vacuum & against a pressure of 1.000atm. (A = 0.000J, -202.6J) *Note that work is reported in J, not L x atm.

b. Calculate the heat required for each system.

(A = 350.0 J; 552.6 J)

Enthalpy of Chemical Reactions

For systems at constant pressure (usually ~1atm):

$$\Delta U = q + w = q_p - P\Delta V$$

 $\Delta U = \Delta H - P\Delta V$

Enthalpy: (H) Experimentally measured & tabulated

- Definition of enthalpy: H = U + PV
- Can think of as heat of a reaction

At constant pressure:

$$\Delta H = \Delta U + P \Delta V$$

Assume negligible volume change: $\Delta H = \Delta U = q_p$

There will be slight differences between ΔH and ΔU , but in many cases they are small enough to be considered negligible

Ways of Calculating Enthalpy/Heat/Energy exchange

$$q = ms\Delta T$$

$$q = C\Delta T$$

$$\Delta H = \Delta U + P\Delta V$$

$$\Delta U_{system} = q + w$$

$$\Delta U_{system} = U_{final} - U_{initial}$$

$$\Delta H_{reaction} = \Sigma \Delta H_{products} - \Sigma \Delta H_{reactants}$$

$$\Delta H_{reaction} = \Delta H_1 + \Delta H_2 + \Delta H_3 + \dots$$

To determine which formula to use - look at information given in the problem!

Enthalpy of Reaction ($\Delta H = q_{rxn}/mol$)

Amount of heat exchanged between system and surroundings during a chemical reaction

$$\Delta H_{reaction} = \Sigma \Delta H_{products} - \Sigma \Delta H_{reactants}$$

Exothermic Reactions

- Temperature increases in an isolated system.
- Heat released to surroundings is treated as a product
- ∆H is negative

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) + 197.8kJ$$
 $\Delta H = -197.8kJ$

Endothermic Reaction

- Temperature decreases in an isolated system.
- Heat absorbed by system is treated as a reactant
- ∆H is positive

197.8kJ + 2SO₃
$$\rightarrow$$
2SO₂(g) + O₂(g) $\Delta H = +197.8kJ$

State function: Independent of path

12

Working with Heat and Enthalpy

1. Make same changes to enthalpy as to # moles If decrease or increase reactants & products, do the same for ΔH

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$
 $\Delta H = -197.8kJ$

$$1SO_2(g) + 1/2O_2(g) \rightarrow 1SO_3(g)$$
 $\Delta H = -197.8kJ/2 = -98.9kJ$

$$\Delta H = -197.8 \text{ kJ} / 2 \text{ mol SO}_3(g)$$
 $\Delta H = -98.9 \text{ kJ} / 1 \text{ mol SO}_3(g)$

2. Reverse the reaction, reverse sign of ΔH

$$2SO_3 \rightarrow 2SO_2(g) + O_2(g)$$
 $\Delta H = +197.8kJ$

These rules will allow you to calculate the AH for any amount of product or reactant

Calculate how much heat is required to decompose $15.0g\ NO_2(g)$ according to this reaction:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H = -114 \text{ kJ}$

Info Provided:

Calculate molar mass of NO_2 – convert mass to moles NO_2 .

Use coefficient & moles NO_2 present to find ΔH for 15.0 g.

Calorimetry

parrinst.com

Calculating AH Via Experiment: Calorimetry

- Calorimetry: Measurement of heat changes
- Calorimeter: Device to measure heat (△T) produced by a chemical reaction
 - $\Delta T = T_{\text{final}} T_{\text{initial}}$
 - Units: generally °C
- Specific Heat (s): Heat needed to raise T of 1 gram by 1°C.
 - $s = q/(m \times \Delta T)$
 - Units: J/g°C or cal/g°C

- $s_{water} = 4.184 J/g^{\circ}C$
 - $= 1 \text{ cal/g}^{\circ}\text{C}$
- Heat capacity (C): Quantity of heat needed to raise T by 1°C
 - $C = m \times s$
 - Units: J/°C or J/K

Heat of Reaction (q_{rxn})

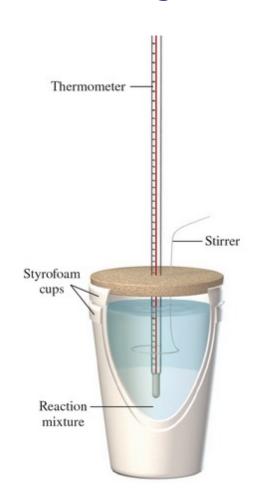
- $q = m \times s \times \Delta T$ (Const. Volume)
- $q = C \Delta T$ (Const. Pressure)
- Units: I

q=ms∆T &
q=C∆T
are the calorimetry
equations

Commonly Used Specific Heats

TABLE 10.2	Specific Heat Values of Some Common Substances		
Substance		Specific Heat $(J/g \cdot {}^{\circ}C)$	
Al(s)		0.900	
$\mathrm{Au}\left(s\right)$		0.129	
C (graphite)		0.720	
C (diamond)		0.502	
Cu(s)		0.385	
$\operatorname{Fe}(s)$		0.444	
$\operatorname{Hg}(l)$		0.139	
$H_2O(l)$		4.184	
$C_2H_5OH(l)$ (et	hanol)	2.46	

Constant Pressure Calorimetry Experiments


During the experiment, heat is transferred from the reaction (system) to the water (surroundings)

- 1. Measure ΔT of water in calorimeter
- 2. Use $q = ms\Delta T$ to calculate the heat gained or lost by the <u>water</u>
- 3. Heat gained by the water in the calorimeter is lost by the system; heat heat lost by the water is gained by the system: -q_{rxn} = q_{cal}
- 4. Use q_{rxn} to determine information about system variables:

$$q_{rxn} = m_{sys} \times s_{sys} \times \Delta T_{sys}$$

Always have 2 sets of variables!

- 1 for water (surroundings)
- 1 for reaction (system)

Example 1: Calorimetry for a Physical Process

A 30.0g sample of metal is heated to 100.0° C by placing it in a boiling water bath. The metal is removed from the boiling water, and placed in 25.0g of water at 22.0°C. The final temp was 27.6°C, what is the specific heat of the metal? $S_{H2O} = 4.184 \text{ J/g}^{\circ}$ C What is your equation?

What info is provided?

Solve for q_{cal} ($q_{cal} = -q_{metal}$)

Use formula for q_{metal} to solve for s_{metal}

Example 2: Calorimetry for a Chemical Reaction

A reaction is conducted in a Styrofoam cup calorimeter

Styrofoam cups

Reaction mixture

- •The calorimeter does not absorb or give off heat.
- Heat absorbed by the solution in the calorimeter (q_{cal}) is the heat that has been given off by the chemical reaction $(-q_{rxn})$

Two solutions are mixed in the calorimeter

40.0 mL of 1.00 M KOH(aq)

 $40.0 \text{mL of } 1.00 \text{M H}_2 \text{SO}_4(\text{aq})$

 T_i of both solutions = 21.00°C

Data on final solution

Density: 1.02 g/mL Volume: 80.0 mL

S.H.: 4.00 J/g°C Temp.: 27.85°C

What is the enthalpy change of this reaction per mole of acid used?

Calculate the enthalpy change, ∆H, of this reaction per mole of acid used.

1. What is the chemical reaction?

2 KOH +
$$H_2SO_4 \rightarrow K_2SO_4(aq) + 2H_2O$$

$$\Delta H_{rxn} = q_{rxn} = -q_{cal}$$

$$q = m \times s \times \Delta T$$

2. What information is given? Initial Information:

40.0 mL of 1.00 M KOH(aq) $40.0 \text{ mL of } 1.00 \text{ M H}_2\text{SO}_4\text{(aq)}$ $T_i \text{ of both solutions} = 21.00^{\circ}\text{C}$

Final information:

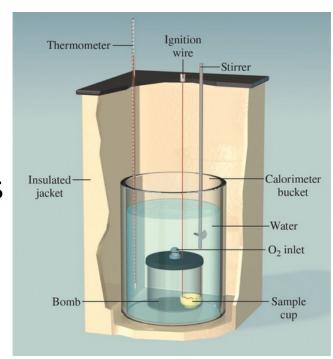
Density: 1.02 g/mL Volume: 80.0 mL

S.H.: $4.00 \text{ J/g}^{\circ}\text{C}$ (not just $H_2\text{O}$)

Temp: 27.85°C

Note: ΔH calculated from calorimetry is heat that was transferred into the solution in the <u>CALORIMETER</u>, not water from the chemical reaction!!!

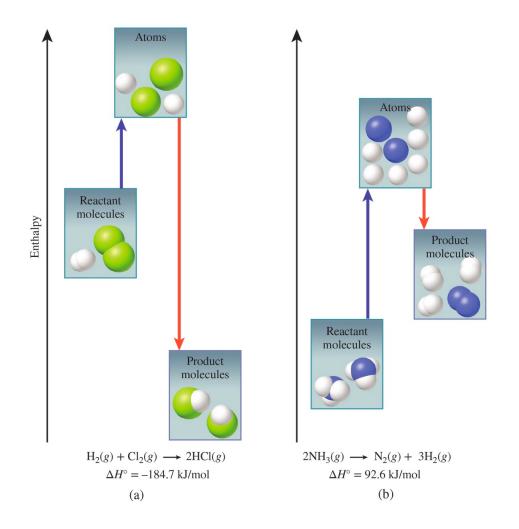
Calculating the ΔH per mole acid, con't


3. Calculate heat absorbed by the solution in the calorimeter (q_{cal}). Need mass of solution for this.

4. Calculate the # of moles of acid used in the reaction. Need to find LR!

Calculate ΔH per 1 mole of acid used. Remember that $q_{cal} = -q_{rxn}$.

Constant Volume "bomb" Calorimetry (Calorimetry with fancier equipment)


- Heat is still transferred from the reaction to the water bath surroundings; the relationship
 -q_{rxn} = q_{cal} is the same.
- 2. Reaction takes place in the "bomb" not directly in the water bath can study combustion & other reactions that cannot take place in solution.
- 3. The equation $\mathbf{q} = \mathbf{C}\Delta \mathbf{T}$ is used, where <u>C</u> is the heat capacity of the calorimeter. Need to know C!
- 4. C is generally determined by burning a material with a well known ΔH of combustion, then using q & ΔT to calculate C.

Constant Volume Calorimetry

A 0.2400g sample of nitroguanidine ($CH_4N_4O_2$; 104.07g/mol) was burned in a bomb calorimeter, increasing the temperature of the water bath from 25.000°C to 30.047°C. If the heat capacity of the calorimeter is 39.52J/°C, what is the heat content of nitroguanidine in J/g and kJ/mole?

Standard Enthalpies, Hess's Law, & Bond Enthalpy

Calculating ΔH_{rxn} Using Known Values: Standard Enthalpies of Formation (ΔH_f°) & Reaction ($\Delta H_f^{\circ}_{rxn}$)

The standard state of an element: $\Delta H_f^{\circ} = 0$

- Pure element in its most stable form at 1 atm & 25°C
- Solutes in aqueous solution are at a concentration of 1M ex: H₂(g) N₂(g) O₂(g) Cl₂(g) Br₂(l) Hg(l) Na(s)

 all have ΔH_f° = 0

The standard molar enthalpy of formation, ΔH_f°

- ΔH_f for 1 mol substance produced from elements in standard states
- Tabulated for compounds at 1atm and 25°C ex: $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H_f^{\circ} = -393.5 \text{kJ/mol}$

Get ΔH_f° values from tables – large table in Appendix 2

Calculation of ΔH_{rxn} Using Known Values

Calculating ΔH° of a chemical reaction

- $\Delta H^{\circ}_{rxn} = \Sigma \Delta H_{f}^{\circ} \text{ products } \Sigma \Delta H_{f}^{\circ} \text{ reactants}$
- ex: $C(s) + O_2(g) \rightarrow CO_2(g)$
- Multiply each ΔH_f° by the stoichiometric coefficient for that species. Ex:

```
C(s) \Delta H_f^{\circ} = 1 \times 0 \text{kJ/mol} = 0 \text{kJ/mol}
O_2(g) \Delta H_f^{\circ} = 1 \times 0 \text{kJ/mol} = 0 \text{kJ/mol}
CO_2(g) \Delta H_f^{\circ} = 1 \times -393.5 \text{kJ/mol} = -393.5 \text{kJ/mol}
           \Delta H_{rxn}^{\circ} = \Delta H_{rxn}^{\circ} - \Delta H_{reactants}^{\circ}
         = -393.5 - (0+0) = -393.5kJ/mol
```

*Note: If there are multiple reactants or products, you add the multiple ΔH_f° values before subtracting reactants from products. 2.7

Calculate ΔH_{rxn}° for the combustion of $C_2H_5OH(I)$ ΔH_f° values are given below

$$C_2H_5OH(I) + 3 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$$

ΔH_f° Reactants:

 C_2H_5OH (I): -277.7 kJ/mol

 O_2 : 0 kJ/mol

Total reactants =

∆H_f° Products

 $CO_2(g)$: -393.5 kJ/mol

 $H_2O(I)$: -285.8 kJ/mol

Total products =

 $\Delta H^{\circ} = products - reactants$

Hess's Law Of Constant Heat Summation: Another way to calculate ∆H

The heat of a reaction, ΔH , is constant, whether the reaction is carried out directly in one step or through a number of steps.

The equation for the overall reaction is the sum of two or more other equations (reaction steps).

$$\Delta H_{rxn} = \Delta H_1 + \Delta H_2 + \Delta H_3 + \dots$$

If you reverse a chemical equation, you reverse the sign of ΔH .

$$\Delta H_{forward} = -\Delta H_{reverse}$$

Hess' Law Example #1

What is ΔH when KOH(s) reacts with H₂SO₄ (aq)? 2 KOH(aq) + H₂SO₄(aq) \rightarrow K₂SO₄(aq) + 2H₂O(l)

This is a 2-step process - dissolve KOH then neutralize - so need to use Hess' Law

Given information: Styrofoam cup calorimetry was used to determine the following:

Step 1. KOH(s) \rightarrow KOH(aq) ΔH_{sol} of KOH(s) = -58.4 kJ/mol

Step 2. Neutralization reaction ΔH per mole KOH = -55.9 kJ/mol

First: Need 2 mol KOH in rxn; must double given values.

Then: Add the Δ Hs for all steps of the reactions

Hess' Law: Using Info From Other Reactions

- 1. Find each reactant in an equation with known enthalpy
 - · Use multiple equations if necessary to find all reactants
- 2. Find each product in an equation with known enthalpy
 - Use multiple equations if necessary to find all products
- 3. Add reactions to get the reaction you are looking for
 - Cross out items that are both products & reactants
 - stoichiometry matters, might not cross out all
 - Add multiples
- 4. Check final equation to make sure it matches the equation of interest.

Hess' Law Example #2

What is the enthalpy of the reaction between carbon and oxygen to form carbon monoxide?

2 C(graphite) +
$$O_2(g) \rightarrow 2$$
 CO(g) $\Delta H = ?$

You are given the following reactions with known enthalpies:

C(graphite) +
$$O_2(g) \rightarrow CO_2(g) \Delta H = -393.5 \text{ kJ}$$

$$2 CO(g) + O_2(g) \rightarrow 2 CO_2(g)$$
 $\Delta H = -566.0 \text{ kJ}$

2 C(graphite) +
$$O_2(g) \rightarrow 2$$
 CO(g) $\Delta H = -221.0$ kJ

Bond Enthalpy

Bond Enthalpy: reason for energy change during reactions

 Energy required to break a particular bond in a molecule in the gas phase.

Enthalpy change for the Reaction (ΔH)

 $\Delta H = \Sigma \Delta H_{bond\ breaking} + \Sigma \Delta H_{bond\ formation}$ Hess' Law! (Note that bond formation is **negative**)

Enthalpy change: $2H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$

$$\Sigma \Delta H_{bond\ breaking} = 2(\Delta H_{H-H})_{+} \Delta H_{O=O}$$

$$= 2(436kJ) + 499kJ$$

$$= +1371$$
kJ (endothermic)

$$\Sigma \Delta H_{formation} = 4(\Delta H_{H-O}) = 4(-460 \text{kJ})$$

$$= -1840$$
kJ (exothermic)

$$\Delta H_{reaction} = \Sigma \Delta H_{bond\ breaking} + \Sigma \Delta H_{bond\ formation}$$

$$\Delta H_{reaction} = 1371 kJ - 1840 kJ = -469 kJ$$

Example 2:

$\Delta H = \Sigma \Delta H_{bond \ breaking} + \Sigma \Delta H_{bond \ formation}$

$$CH_3CH_2OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$$

+1140 kcal/mol

$$C-H Bond = 100 kcal/mole$$

3 O=O bond x 120 kcal/mol = 360 kcal/mol

E_{bond formation}: 2x2 C=O bonds x -180 kcal/mol = -720 kcal/mol3x2 O-H bonds x -110 kcal/mol = -660 kcal/mol

negative! -1380 kcal/mol

$$\Delta H = E_{breaking} + E_{formation}$$

$$= 1140 \text{ kcal/mol} + (-1380 \text{ kcal/mol})$$

$$= 1140 \text{ kcal/mol} - 1380 \text{ kcal/mol}$$

$$= -240 \text{ kcal/mol}$$

$$= 34$$

Estimate the enthalpy change for the combustion of 1 mole of methane

1. Write the reaction: $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$

2. Calculate energy needed to break the bonds in reactants (ΔH_{BB}) and energy produced when the bonds of products form (ΔH_{BF}).

Bonds broken △H

Bonds formed ΔH

3. Calculate ΔH for the reaction ($\Delta H = \Delta H_{BB} + \Delta H_{BF}$) & divide by coefficient of CH_4 .

$$\Delta H_{approx} =$$

Representative Bond Enthalpies

Table 10.4 TABLE 9.3 in your book

Some Bond Enthalpies of Diatomic Molecules* and Average Bond Enthalpies for Bonds in Polyatomic Molecules

Bond	Bond Enthalpy (kJ/mol)	Bond	Bond Enthalpy (kJ/mol)
н-н	436.4	c-s	255
H-N	393	c = s	477
H-O	460	N-N	193
H-S	368	N = N	418
H-P	326	$N \equiv N$	941.4
H-F	568.2	N-O	176
H-CI	431.9	N = 0	607
H-Br	366.1	o-o	142
H-I	298.3	o = 0	498.7
C-H	414	O-P	502
c-c	347	o=s	469
c = c	620	P-P	197
$C \equiv C$	812	P=P	489
C-N	276	s-s	268
C=N	615	s=s	352
$C \equiv N$	891	F-F	156.9
c-o	351	CI-CI	242.7 C=C
$C = O^{\dagger}$	745	Br - Br	192.5
C-P	263	I-I	151.0

C=O in CO₂: 799 kJ/mol

36