Chapter Fourteen: Chemical Kinetics

Rate of Reaction = speed

Kinetics = study of how fast reactions take place

Collision Theory

Three things must happen for a reaction to occur:
1. Reacting molecules must collide

Can increase the number of collisions with
increased reactant concentration
higher temps (= faster molecules)

2. Molecules must have the correct orientation

3. Activation Energy (E_a) must be exceeded

 E_a = minimum energy required for a reaction to occur

Energy Diagrams: Activation Energy & Transition State

Reactants: Original components before a reaction **Products:** New elements/compounds formed from reaction

Transition State (aka Activated Complex): Temporary & generally unstable combination of atoms formed from molecular collision. Will be transformed into products as the reaction proceeds.

Energy Diagrams: Thermodynamics & Reaction Progress $A + B \rightarrow AB^{\ddagger} \rightarrow C + D$

Reaction Rates

Kinetics:

- Study of rates of chemical reactions
- How fast does a reaction proceed?

Reaction Rate:

Rate = $\frac{\Delta Concentration}{\Lambda Time} = \frac{[mol/L]}{\Delta T} = \frac{M}{sec}$ $2 H_2O_2(I) \rightarrow 2 H_2O(I) + O_2(g)$ Rate of formation of product: Rate = $+\Delta[O_2]/s$ Rate of disappearance of reactant: Rate = $-\Delta[H_2O_2]/s$ (Use of negative makes rate positive, sometimes rate is written as negative)

There is much variation in reaction rates

Linearity of Reaction Rates

Reaction rates vary greatly

- Very fast; ex: burning
- Very slow; ex: disintegration of plastic in sunlight

Often not linear

- Rate is often faster at the beginning
- Rate is slowest at the end
- Some reactant often left over
- Especially pronounced for slow reactions

Average Rate of Reaction:

Types of Reaction Rates Reaction rate = Δ Concentration/ Δ time = slope

- 1. Plot of original data
 - [Conc.] vs time
 - If curved = rate changes
 - Will reach equilibrium
 - If linear = rate is constant
 - Will run out of reactant
- 2. Average rate of reaction
- 3. Instantaneous rate
 - Tangent to curve 1
 - Can pick any time
- 4. Initial rate
 - t=0 to t=given time
 - Generally portion of curve 1 that is linear

Instantaneous Rate

 $Br_2(aq) + HCOOH(aq) \rightarrow 2 Br^-(aq) + 2H^+(aq) + CO_2(g)$

Brown color of Br₂ disappears as reaction progresses

To Find Instantaneous Rate:

- Select time
- Draw line tangent to curve at that time
- Find slope of the tangent line
- Units of [conc.]/time

Initial Rate

Portion of original data where curve is linear

Stoichiometry & Reaction Rate

- When writing rates based on different reactants or products, <u>think</u> about what is happening $Br_2(aq) + HCOOH(aq) \rightarrow 2 Br^{-}(aq) + 2H^{+}(aq) + CO_2(q)$
- Rate at which Br₂ disappears: X M/s

In terms of Br₂:

What is the rate of formation of Br⁻? 2X M/s What is the rate of disappearance of HCOOH? X M/s

Rate at which Br forms: Z M/s

In terms of Br⁻:

What is the rate of disappearance of Br_2 ? $\frac{1}{2} Z M/s$ What is the rate of formation of CO_2 ? $\frac{1}{2} Z M/s$

This method works for zero order & instantaneous rates, not for more complex rates.

Stoichiometry & Reaction Rate

1. The rate of decomposition of N₂O₅ at a particular instant in a reaction vessel is 4.2×10^{-7} M/s. What is the rate of appearance of (a) NO₂ and (b) O₂? $2 N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ (a) 8.4×10^{-7} M/s

(b) 2.1x10⁻⁷ M/s

2. Consider the reaction:

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ Suppose that at a particular moment during the reaction hydrogen is reacting at the rate of 0.074M/s. (a) At what rate is ammonia being formed? (b) At what rate is nitrogen reacting?

(a) 0.049 M/s (b) -0.025 M/s Factors Affecting Reaction Rates Increasing # collisions increases rate Reaction: + ● →

1. Increase concentration of reactant More particles in same volume = greater chance of collision

2. Increase temperature

Particles move faster – more likely to collide with enough E_A

3. Add a catalyst

Catalyst: chemical that does not change the amount of overall product or reactants, only the rate of the reaction

- fix molecular orientation
- alter transition state; lower E_a
- increase desired surface area

4. Improve Mixing

More interactions = greater chance of effective collision

Rate Laws: Show Impact of Reactant Concentration on Rate **Rate Law Format**: For the reaction $A + B + C \dots \rightarrow Products$ Rate Law: Rate = $k[A]^m[B]^n[C]^p$... Based on initial concentrations and rate Variables required in Rate Law: $\mathbf{k} = \mathbf{rate \ constant}$ m = order of reaction in reactant An = order of reaction in reactant Bp = order of reaction in reactant Cother letters as needed for additional reactants Overall Order of Reaction = sum of the orders of reaction for each reactant Overall Order = m + n + p

Rate Laws account for non-linearity of reactions

Rate Laws con't

Properties of Rate Laws:

- Orders do not need to be positive integers
 - Ex: if concentration does not impact rate, order is zero
- Orders must be found <u>experimentally</u>
- Catalyst concentrations are included
- Rate Laws hold only for a specific temperature
- Rate Laws do **NOT** come from the balanced equation!

Example: $H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$ Rate = $k[H_2][NO]^2$

Rate Constant, k

- Depends on reaction, temperature, and catalyst
- Also found experimentally

Determining Rate Laws: Isolation Method

Conduct a series of experiments

- Change the concentration of just one reactant each time
- Measure the impact on the rate from each reactant
- Use the ratios of the rates to determine m, n, etc.
- Rearrange the Rate Law & plug in values to solve for k.
- Example: For the reaction $A + B \rightarrow Products Rate = k[A]^m[B]^n$

Conduct 3 experiments:

Use [A] & [B], measure Rate 1
 Use [A]₂ & [B], measure Rate 2
 Use [A] & [B]₂, measure Rate 3

To determine m, divide

To determine n, divide

To determine k, solve k = Rate $[A]^m[B]^n$ When reporting Rate Laws, use the numbers for k, m, & n 17

Determining Rate Laws: Isolation Method

A set of experiments was run to study the rate of the reaction:

 $BrO_3^-(aq) + 5Br^-(aq) + 6H^+(aq) \rightarrow 3Br_2(aq) + 3H_2O(l)$

The following data was obtained:

Expt #	[BrO ₃ ⁻]	[Br ⁻]	[H+]	Rate (M/s)
1	0.10	0.10	0.10	-1.2 x 10 ⁻³
2	0.20	0.10	0.10	-2.4 x 10 ⁻³
3	0.20	0.30	0.10	-7.4 x 10 ⁻³
4	0.20	0.10	0.15	-5.4 x 10 ⁻³

Rate = $k[BrO_3^-]^m[Br^-]^n[H^+]^p$

Determining Rate Laws: Order of Reactants

 $Rate = k[BrO_3^-]^m[Br^-]^n[H^+]^p$

Expt #	[BrO ₃ -]	[Br-]	[H+]	Rate (M/s)
1	0.10	0.10	0.10	-1.2 x 10 ⁻³
2	0.20	0.10	0.10	-2.4 x 10 ⁻³
3	0.20	0.30	0.10	-7.4 x 10 ⁻³
4	0.20	0.10	0.15	-5.4 x 10 ⁻³

Order of reaction in BrO_3^- (m):

Order of reaction in Br⁻ (n):

Order of reaction in H⁺ (p):

Determining Rate Laws: k & Rate Law

Expt #	[BrO ₃ -]	[Br ⁻]	[H+]	Rate (M/s)	$Rate = k[RrO_{2}^{-}]m[Rr^{-}]n[H^{+}]p$
1	0.10	0.10	0.10	-1.2 x 10 ⁻³	
2	0.20	0.10	0.10	-2.4 x 10 ⁻³	m = 1
3	0.20	0.30	0.10	-7.4 x 10 ⁻³	n = 1
4	0.20	0.10	0.15	-5.4 x 10 ⁻³	p = 2

k: Solve using data from each experiment (4X!) & <u>average</u> $k = \frac{Rate}{[BrO_3^{-}]^1[Br^{-}]^1[H^{+}]^2}$

Rate Law =

Rate Laws can be used to determine the initial speed of a reaction with given concentrations of reactants.

For the reaction: $BrO_3^-(aq) + 5Br^-(aq) + 6H^+(aq) \rightarrow 3Br_2(aq) + 3H_2O(I)$

> we determined that the Rate Law was: Rate = $-12M^{-3}s^{-1}[BrO_3^{-1}][Br^{-1}][H^{+1}]^2$

If we start with the following concentrations: $[BrO_{3}^{-}] = 0.4M$ $[Br^{-}] = 0.8M$ $[H^{+}] = 0.2M$

How fast will the initial reaction proceed?

Rate = $-12M^{-3}s^{-1} \times [0.4M] \times [0.8M] \times [0.2M]^2$ = 0.15 M⁻³s⁻¹ M⁴ = 0.15 Ms⁻¹ **Types of Reactions Based on Rate: Zero Order** Change in concentration over time IS linear Rate Law for $A \rightarrow$ Product: rate = k $[A]^0 = k$

Units of k: k = rate = M/s

Linear Rate Equation:

 $[A] = -kt + [A]_0$

Eventually [A] will go to zero (all reactant will be used up)

Note that this equation is in the form y = mx + b, where b is the y-intercept (i.e. the initial concentration of A).

Types of Reactions Based on Rate: First Order Change in concentration over time is NOT linear Change in the natural log (ln) of concentration over time IS linear.

Rate Law for A \rightarrow Product: rate = $-\frac{\Delta[A]}{\Delta t} = k[A]$

Units of k: k = rate/[A] = $(M/s)/M = 1/s = s^{-1}$

[A] vs. time is Nonlinear

In [A] vs time is Linear:

 $[A] = [A]_0 e^{(-kt)}$

$$\ln\!\left(\frac{[A]}{[A]_0}\right) = -kt$$

 $[A]_t = [A] \text{ at time } t$ $[A]_0 = [A] \text{ at } t=0$

Types of Reactions Based on Rate: Second Order

Change in concentration over time is NOT linear

Change in the inverse of concentration (1/[A]) over time IS linear.

Rate Law for A \rightarrow Product: rate = $-\frac{\Delta[A]}{\Delta t} = k[A]^2$

Units of k: $k = rate/[A]^2 = (M/s)/M^2 = 1/Ms = M^{-1}s^{-1}$

Predicting Reaction Order Graphically

For the reaction $A \rightarrow$ Products:

- 1. Calculate In[A] and 1/[A]
- 2. Make 3 graphs: [A], In[A], and 1/[A] vs. time
- 3. The graph with the best straight line is the reaction order

	Zero	First	Second
time, s	[A] M	ln [A]	1/[A]
0	1.710	0.536	0.585
4	1.150	0.140	0.870
8	0.870	-0.139	1.149
24	0.460	-0.777	2.174
45	0.280	-1.273	3.571

Predicting Reaction Order Graphically

 $[A] = -kt + [A]_0 \qquad \qquad In[A] = -kt + In[A]_0$ Not linear, so not Zero Order Not linear, so not First Order

1/[A] = kt + 1/[A]₀ Linear, so reaction is <u>Second Order</u>

Using a Graph to Find Rate Constant, k

Equation of the line is: y = mx + b $1/[A] = kt + 1/[A]_0$ k = m = slope!

$$k = m = (y - y_1)/(x - x_1)$$
$$= (3.57 - 1.15)/(45 - 8)$$
$$= 0.066 \text{ M}^{-1}\text{s}^{-1}$$
$$\frac{1}{[A]} = 0.066t + \frac{1}{[A]_0}$$

Using Line Equations to Find Information

1. For the first order reaction: $2 N_2O_5 \rightarrow 2 N_2O_4 + O_2$ at 45°C, k = $6.22 \times 10^{-4} \text{ s}^{-1}$. If $[N_2O_5] = 0.100\text{M}$: a.) How long does it take for the concentration to drop to 0.010M?

b.) What is the concentration after one hour? A: 0.0107M

2. The decomposition of sulfuryl chloride (SO₂Cl₂) is first order in SO₂Cl₂. The rate constant for the decomposition at 660K is $4.5 \times 10^{-2} \text{ s}^{-1}$.

a.) If we begin with an initial SO_2CI_2 pressure or 450 torr, what is the pressure of this substance after 60.s? A: 30. torr

b.) At what time will the pressure of SO_2CI_2 decline to 1/10 its initial value? A: 51s