Chapter 17

Acids & Bases

$$H_2O + H_2O \longrightarrow H_3O^+ + OH^-$$

Some Polyatomic Ions that are Important for Acids & Bases

Ammonium	NH ₄ +	Nitrate	NO_3^-
Hydronium	H_3O^+	Nitrite	NO ₂ -
Acetate	CH ₃ COO-	Phosphate	PO ₄ ³⁻
Carbonate	CO ₃ ²⁻	Perchlorate	ClO ₄ -
Hydroxide	OH-	Sulfate	SO ₄ ²⁻
Cyanide	CN-		

You should know these ions

What are Acids & Bases? Arrhenius Definition

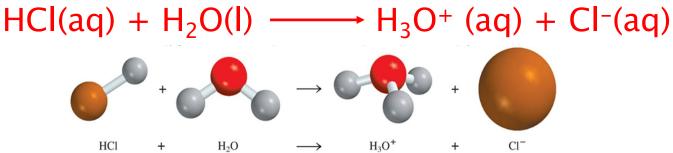
Acid:

A substance that, when dissolved in water, increases the concentration of hydrogen (H+) ions (aka protons).

$$HCI(g) \xrightarrow{H_2O} H^+(aq) + CI^-(aq)$$

Base:

A substance that, when dissolved in water, increases the concentration of hydroxide ions (OH-).


NaOH (s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺ (aq) + OH⁻ (aq)

What are Acids & Bases? Brønsted-Lowry Definition

Acid:

A proton (H+) donor

- Must have a removable proton
- Proton goes to a base

Base:

A proton (H+) acceptor

NH3

Must have a pair of non-bonding electrons

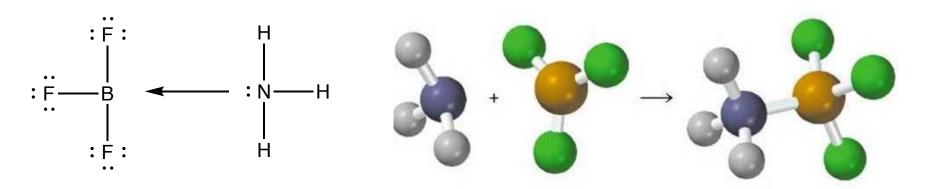
$$NH_3(aq) + H_2O(I) \longrightarrow NH_4^+ (aq) + OH^- (aq)$$

OH-

Lewis Acids & Bases

Acid:

An electron pair acceptor


- · Do not need to have a removable proton
- Must have an empty orbital to put electrons in

Base:

An electron pair donor

Must have a pair of non-bonding electrons

Ex:
$$BF_3(g) + NH_3(g) \rightarrow F_3B-NH_3(g)$$

Strength of Acids & Bases

Strong Acids & Bases: Complete dissociation

- Non H⁺/OH⁻ ions form spectator ions
- Can use basic stoichiometry (CHM 101) in calculations
- No undissociated reactant left in solution

Weak Acids & Bases: Incomplete dissociation

- Equilibrium process
- Equilibrium constants are K_a or K_b
- Titrations involve stoichiometry and equilibrium calcs.

Aqueous Solutions

- Acid or Base reacts with water
 - Water acts as a weak acid or base in the reaction

Factors impacting acid strength Basic concept: easier to lose H, stronger acid

Charge:

- Higher charge = stronger bond to H⁺ = weaker acid
- Ex: HAsO₄²⁻ weaker than H₂AsO₄⁻ weaker than H₃AsO₄

Bond length:

- Shorter bonds are stronger so H⁺ harder to remove
- Ex: HF weaker than HCl weaker than HBr

Electronegativity:

- Less electronegative, share e⁻ more equally, stronger bond
- Ex: P less electronegative than S, H₃PO₄ weaker than H₂SO₄

For Oxoacids

- If all else is equal, fewer double bonds = weaker acid
- Ex: H₂SO₃ weaker than H₂SO₄
- More double bonds = more resonance = more stability with H⁺ removed

Stability of conjugate base: more stable anion = more acidic

Binary Acid Trends in the Periodic Table

For binary acids:

Acidity increases left to right across a row

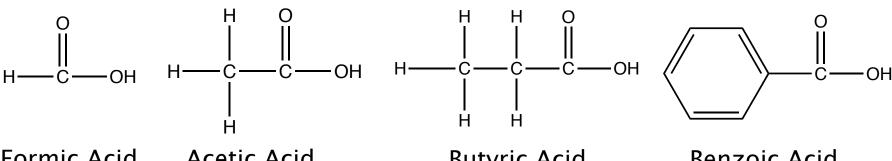
- Electrongativity increases left to right
 Acidity increases top to bottom down a group
- Atomic size increases down a group

Common Acids & Bases You Will Need to Know

Strong Acids: Strong Bases:			
Hydrochloric Acid	HCI	Soluble Hydroxides:	
Sulfuric Acid	H_2SO_4	Sodium	NaOH
Nitric Acid	HNO_3	Potassium	КОН
Perchloric Acid	HCIO ₄	Lithium	LiOH
Hydrobromic Acid	HBr	Barium	Ba(OH) ₂
Hydroiodic Acid	HI	etc.	

Weak Acids:		Weak Bases:	
Carbonic Acid	H_2CO_3	Ammonia	NH_3
Phosphoric Acid	H_3PO_4	Amines	$R-NH_2,R_2NH$
Acetic Acid	CH ₃ COOH	Insoluble/slightly	<i>'</i>
Hydrofluoric Acid	HF	soluble hydroxid	es
Nitric Acid	HNO_2		
Hydrocyanic acid	HCN		
Carboxylic Acids	R-COOH		

Organic Acids: Carboxylic Acids (-COOH)


Weak organic acids

- -COOH group on molecule is acidic
- Removal of proton (H⁺) creates resonance structure
- Stabilizes anion

Never fully dissociate in water

Equilibrium process

Examples:

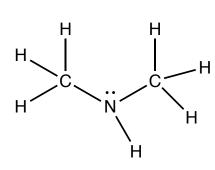
Formic Acid

Acetic Acid

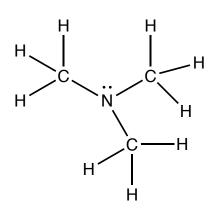
Butyric Acid

Benzoic Acid

Organic Bases: Amines (contain N)


Weak organic bases

- Derivatives of ammonia
- N has lone pair of electrons to accept a proton Also do not fully dissociate in water
- Equilibrium process


Examples:

$$\begin{array}{c|c} H & & \\ \hline \\ H & & \\ \hline \\ C & & \\ N & \\ H \end{array}$$

Methyl amine

Dimethyl amine

Trimethyl amine

Organic Acids & Bases: Things to keep in mind

Organic Acids & Bases:

Only acidic proton

Acid: CH₃COOH Becomes CH₃COO-

Amine: CH₃NH₂ Becomes CH₃NH₃+

Carbon: no lone pairs

- Cannot accept extra protons
- Protons bonded to carbon are not acidic

Added proton bonds via lone pair on N

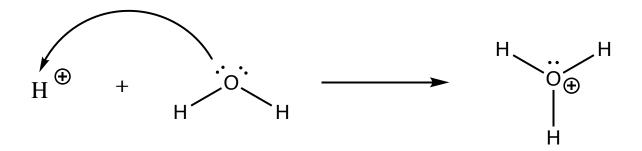
Conjugate Acid-Base Pairs

HCI(aq) + H₂O(I)
$$\longrightarrow$$
 H₃O⁺ (aq) + CI⁻(aq)
Acid Base Conjugate Conjugate Base
NH₃(aq) + H₂O(I) \longrightarrow NH₄⁺(aq) + OH⁻(aq)
Base Acid Conjugate Conjugate Acid Base

Conjugate Acid: Formed from the base after H+ is added Conjugate Base: Formed from the acid after H+ is lost

Each acid has a conjugate base, each base has a conjugate acid. For substances that can both gain or lose a proton, whether they act as an acid or base depends on the system.

Conjugate Acid-Base Pair Examples

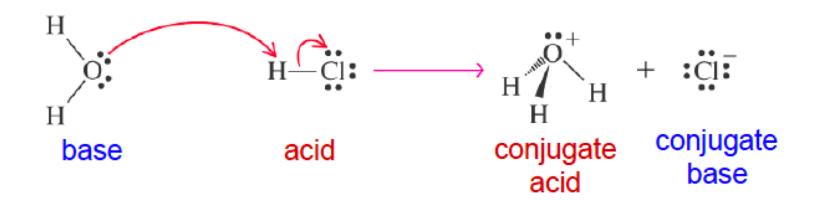

- 1. Give the conjugate base of each of the following acids:
 - a) HIO₃
 - b) NH₄+
 - c) H₂S
 - d) HPO₄²⁻

- 2. Write the formula for the conjugate acid of each of the following bases:
 - a) HSO₃⁻
 - b) F-
 - c) CO₃²⁻
 - d) CH₃NH₂

H+ Ion in Water

H+ is simply a proton - an H atom with no electron

- In water, clusters of hydrated H+ form
- Simplest cluster is the hydronium ion: H₃O+



• H⁺ (aq) & H₃O⁺(aq) are used interchangeably

$$HA \longrightarrow H^+ + A^-$$

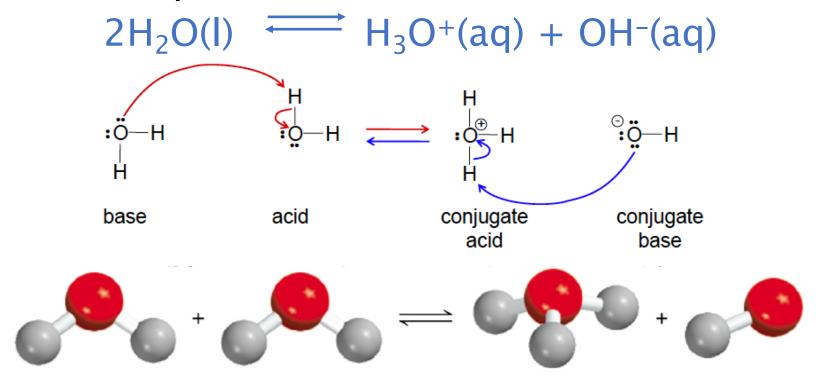
$$HA + H_2O \longrightarrow H_3O^+ + A^-$$

Proton Transfer Reactions: Aqueous Acid

- HCI (the BL acid) donates a proton (H+)
- Water (the BL base) accepts the proton
- The conjugate base of the acid (Cl⁻) and the conjugate acid of the base (H₃O⁺) are formed

Proton Transfer Reactions: Aqueous Base

- Water (the BL acid) donates a proton (H+)
- Ammonia (the BL base) accepts the proton
- Water is AMPHIPROTIC it can act as either an acid or a base (donate or accept a proton)


Proton Transfer Reactions: Non-Aqueous

- HCI (the BL acid) donates a proton (H+)
- Ammonia (the BL base) accepts the proton
- Can occur in the gas phase water not needed
- Advantage of Brønsted-Lowry definition over Arrhenius definition
- Lewis definition even more broad (electron pair donor/acceptor)

Acid-Base Properties of Water: Autoionization

Autoionization: In pure water, one water molecule can donate a proton to another water molecule

Essentially the water ionizes itself ("auto")

This is why pure water can conduct electricity

Autoionization: An Equilibrium Process

Consider the autoionization of water at 25°C

$$H_2O(I) + H_2O(I) \longrightarrow H_3O^+(aq) + OH^-(aq)$$

Weak Base Weak Acid Strong Acid Strong Base

$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$$

This H₃O⁺ & OH⁻ concentration is where the pH of 7 for pure water comes from

$$K_w = [H_3O^+][OH^-] = 1.0x10^{-14}$$
 (ion-product constant)

 K_w is very small = favors reactants (H_2O)

K_w applies to both pure water and aqueous solutions

• If know acid concentration, can use K_w to find the base concentration & vice versa

pH & pOH

Method of Measuring Acidity

• Power of the Hydrogen Ion

Formulas:

- pH = $-\log[H_3O^+]$
- $[H_3O^+] = 10^{(-pH)}$
- $pOH = -log[OH^-]$
- $[OH^-] = 10^{(-pOH)}$
- $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} M$
- $pK_w = pH + pOH = 14$

Neutral: $[H_3O^+] = [OH^-] pH = 7$

Acidic: $[H_3O^+] > [OH^-] pH < 7$

Basic: $[H_3O^+] < [OH^-] pH > 7$

Sample	pH Value
Gastric juice in the stomach	1.0-2.0
Lemon juice	2.4
Vinegar	3.0
Grapefruit juice	3.2
Orange juice	3.5
Urine	4.8-7.5
Water exposed to air*	5.5
Saliva	6.4-6.9
Milk	6.5
Pure water	7.0
Blood	7.35-7.45
Tears	7.4
Milk of magnesia	10.6
Household ammonia	11.5

Sig Figs: # sig figs in concentration = # sig figs after decimal point in pH/pOH $_{21}$

What is log?

Consider the number 1.0×10^{-3}

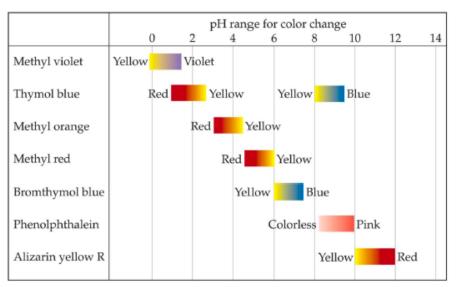
- Log refers to base 10
- Essentially, it refers to the exponent in a number written in scientific notation
- It tells you the magnitude (size) of the number
- The log of 1.0×10^{-3} is -3
- The formula for pH is -log to eliminate the negative sign in the answer

Consider the number 2.8 x 10⁻³

- Log still refers primarily to the exponent, but the actual value is impacted by the rest of the number
- The log of 2.8×10^{-3} will be close to, but not exactly, -3
- $Log(2.8 \times 10^{-3}) = -2.6$

Low pH values are acidic because concentrations generally have negative exponents. $1 \times 10^{-3} \text{M} > 1 \times 10^{-10} \text{M}$

Measuring pH


Most Accurate: pH meter

 Measures the voltage in a solution to determine concentration & pH

Other methods:

- Litmus paper
 - Red litmus paper turns blue above ~ pH 8
 - Blue litmus paper turns red below ~ pH 5
- Indicators
 - In solution or on pHydrion paper

Concentrated vs. Dilute Solutions

Do we need to take the autoionization of water into account when determining pH?

Example 1: Concentrated Solutions

Consider an aqueous 0.010M solution of nitric acid.

Two reactions are occurring:

$$HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq) [H_3O^+] = 0.010M$$

 $2H_2O(I) \implies H_3O^+(aq) + OH^-(aq) [H_3O^+] = 1.0 \times 10^{-7}M$

The $[H_3O^+]$ from ionization of water is negligible: 0.010M + 0.0000001M = 0.0100001MIt can be ignored

Concentrated vs. Dilute Solutions

Example 2: Dilute Solutions

Consider an aqueous $1.0 \times 10^{-6} M$ solution of nitric acid.

Two reactions are again occurring:

$$HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq) [H_3O^+] = 1.0 \times 10^{-6} M$$

$$2H_2O(I) \implies H_3O^+(aq) + OH^-(aq)$$
 $[H_3O^+] = 1.0 \times 10^{-7} M^*$

*Likely somewhat less due to Le Châtelier's Principle

The [H₃O⁺] from ionization of water is 10% of the amount contributed by the acid:

$$1.0 \times 10^{-6} M + 0.1 \times 10^{-6} M = 1.1 \times 10^{-6} M$$

It CANNOT be ignored

Contribution from autoionization of water must be taken into account if acid/base provides < 10⁻⁶M H₃O⁺/OH⁻

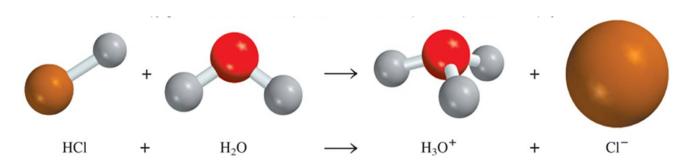
pH Calculations for Strong Acids/Bases

1. Calculate [H⁺] at 25°C for an aqueous solution in which $[OH^-] = 0.00045M$. Indicate whether it is acidic, basic, or neutral. A: $2.2 \times 10^{-11}M$; basic

2. Find the pH and pOH of a 0.0050M HBr solution at 25°C pH: 2.30; pOH: 11.7

3. Calculate the H_3O^+ and OH^- concentrations at 25°C of an aqueous 0.010M solution of nitric acid. [H_3O^+]: 0.010M

[OH-]: 1.0x10⁻¹²

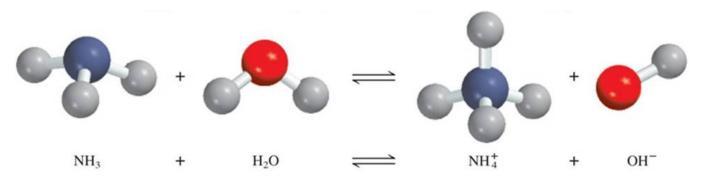

5. Calculate the pH made from 15.00mL of 1.00M HCl diluted to 0.500L. A:1.523

6. What is the concentration of a solution of $Ba(OH)_2$ for which the pH is 10.05? A: 5.6×10⁻⁵M

Strength of Acids & Bases

Strong Acids & Bases: Complete dissociation

- Strong electrolytes
- Good conductors of electricity
- Completely ionized in aqueous solution; no original compound remains
- Conjugate has no measurable strength
- Single arrow not equilibrium

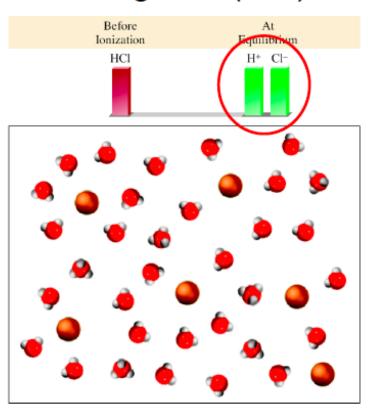

$$HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq)$$

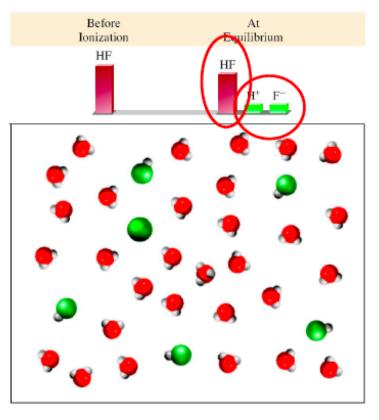
$$NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$

Strength of Acids & Bases

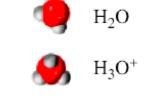
Weak Acids & Bases: Incomplete dissociation

- Some of original compound remains along with ions
- · Equilibrium process; represented by double arrow
- · Dissociation is governed by an equilibrium constant
 - K_a or K_b
- Poor conductors of electricity
- Conjugates can act as acids/bases

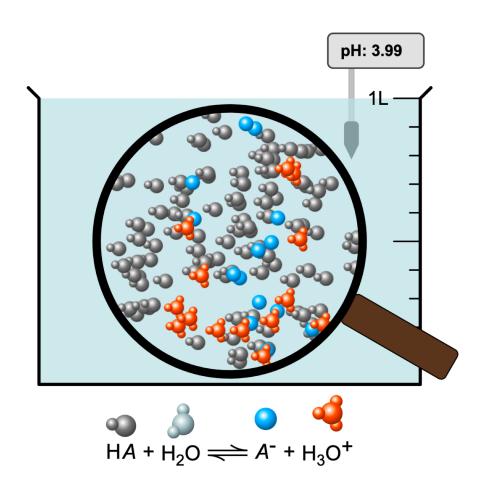



$$CH_3COOH(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + NO_3^-(aq)$$

$$CH_3NH_2(aq) + H_2O(I) \longrightarrow CH_3NH_3^+(aq) + OH^-(aq)$$


Strong Acid (HCI)

Weak Acid (HF)



Strong vs. weak simulation

2 Factors affect pH of solution:

- nature of acid/base
 - concentration

Relative Strengths of Conjugate Acid-Base Pairs

Strong Acids/Bases give weak conjugates and vice versa

Table 16.2 Relative Strengths of Conjugate Acid-Base Pairs			
Acid		Conjugate Base	
Weak acids Weak acids Weak acids HI (1) HBr HCl H ₂ SO HNO HSO HF (1) HCN HCN H ₂ O HCN H ₂ O	O ₄ (perchloric acid) hydroiodic acid) (hydrobromic acid) (hydrochloric acid) O ₄ (sulfuric acid) (hydronium ion) (hydrogen sulfate ion) hydrofluoric acid) OH (formic acid) COOH (acetic acid) (ammonium ion) (hydrocyanic acid) (water) (ammonia)	ClO ₄ (perchlorate ion) I ⁻ (iodide ion) Br ⁻ (bromide ion) Cl ⁻ (chloride ion) HSO ₄ (hydrogen sulfate ion) NO ₃ (nitrate ion) H ₂ O (water) SO ₄ ²⁻ (sulfate ion) F ⁻ (fluoride ion) NO ₂ (nitrite ion) HCOO ⁻ (formate ion) CH ₃ COO ⁻ (acetate ion) NH ₃ (ammonia) CN ⁻ (cyanide ion) OH ⁻ (hydroxide ion) NH ₂ (amide ion)	

Stronger acids will dominate over weaker acids $HNO_2(aq) + CN^-(aq) \Longrightarrow HCN(aq) + NO_2(aq) K>1_{32}$

Acid Ionization Constant: Ka

Equilibrium constant for acid dissociation

Dissociation of acid in water:

$$HA(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

$$K_{eq} = \frac{[H_3O^+][A^-]}{[HA]} = K_a$$

K_a is the acid ionization (aka acid dissociation) constant

- Quantitative measure of acid strength
- Higher K_a = stronger acid
- Sometimes discussed in terms of pK_a

$$pK_a = -log K_a$$

Ka Values for Some Common Weak Acids

Name of Acid	Formula	Structure	Ka	Conjugate Base	$K_{\rm b}$
Hydrofluoric acid	HF	H—F	7.1×10^{-4}	F ⁻	1.4×10^{-11}
Nitrous acid	HNO_2	O=N-O-H	4.5×10^{-4}	NO_2^-	2.2×10^{-11}
Acetylsalicylic acid (aspirin)	$C_9H_8O_4$	О С—О—Н О—С—СН ₃	3.0×10^{-4}	$C_9H_7O_4^-$	3.3×10^{-11}
Formic acid	НСООН	O ∥ H—C—O—H	1.7×10^{-4}	HCOO-	5.9×10^{-11}
Ascorbic acid*	$C_6H_8O_6$	H—O、OH	8.0×10^{-5}	$C_6H_7O_6^-$	1.3×10^{-10}
		C = C $C = C$			
Benzoic acid	C ₆ H ₅ COOH	О С — О — Н	6.5×10^{-5}	C ₆ H ₅ COO ⁻	1.5×10^{-10}
Acetic acid	CH ₃ COOH	О CH ₃ —С—О—Н	1.8×10^{-5}	CH ₃ COO ⁻	5.6×10^{-10}
Hydrocyanic acid	HCN	H—C≡N	4.9×10^{-10}	CN-	2.0×10^{-5}
Phenol	C ₆ H ₅ OH	О—Н	1.3×10^{-10}	$C_6H_5O^-$	7.7×10^{-5}

Calculations Using K_a

1.) 0.100mol of HF is dissolved in 1.00L of water at 25°C. The pH at equilibrium was found to be 2.08. Calculate K_a . 2.) What is the pH of a weak 0.122M monoprotic acid whose K_a is 5.7×10^{-4} ?

Determining Relative Acidity

1.) Which is the stronger acid, HF or HNO₂?

Look up K_a in table:

HF: 7.5x10⁻⁴

 HNO_2 : 4.6x10⁻⁴

Making Approximations in Equilibrium Calculations (do we need to use the Quadratic Equation?)

Answer: Only if the percent difference between X and the equilibrium concentration is >5%

Example A:

Find [HClO] for a 0.010M solution of hypochlorous acid (HClO) at 25°C. HClO(aq) + H₂O(l) \Longrightarrow H₃O⁺(aq) + ClO⁻(aq) where $K_a = 2.9 \times 10^{-8}$.

	HCIO	H ₃ O ⁺	CIO-
ı	0.010	0	0
С	-X	+X	+X
Е	0.010-X	Х	Х

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

$$2.9 \times 10^{-8} = \frac{[X][X]}{[0.010-X]}$$
 Ignore this X

$$2.9 \times 10^{-8} = \frac{X^2}{0.010}$$

$$X^2 = 2.9 \times 10^{-10}$$

 $X = 0.000017$

$$[HCIO] = 0.010 - 0.000017 \sim 0.010$$

$$(0.000017/0.010)*100 = 0.17\%$$

Approximation OK

Making Approximations in Equilibrium Calculations (do we need to use the Quadratic Equation?)

Answer: Only if the percent difference between X and the equilibrium concentration is >5%

Example B:

Find [HNO₂] for a 0.010M solution of nitrous acid (HNO₂) at 25°C. HNO₂(aq) + H₂O(I) \Longrightarrow H₃O⁺(aq) + NO₂⁻(aq) where

 $K_a = 4.5 \times 10^{-4}$.

	HNO ₂	H ₃ O ⁺	NO ₂ -
I	0.010	0	0
С	-X	+X	+X
Е	0.010-X	Х	Х

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

$$4.5 \times 10^{-4} = \frac{[X][X]}{[0.010-X]}$$
 Ignore this X

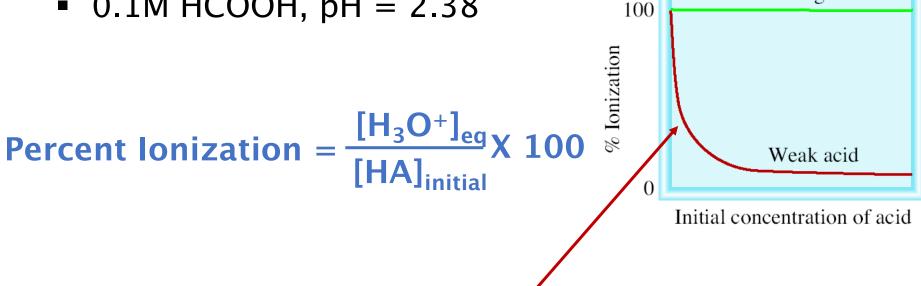
$$4.5 \times 10^{-4} = \frac{X^2}{0.010}$$

$$X^2 = 4.5 \times 10^{-6}$$

 $X = 0.0021$

$$[HNO_2] = 0.010 - 0.0021 \sim 0.008$$

(0.0021/0.008)*100 = 26%Approximation **NOT** acceptable


Making Approximations

1.) Find the pH of a 0.20M solution of Formic Acid (HCHO₂)

Look up K_a in table:

Percent Ionization and Ka

- Indicates the extent to which an acid is ionized
- Only matters for weak acids (100% for strong)
- Higher percent ionization = more ions = stronger acid
 - Ex: 0.1M HCl, pH = 1.00
 - 0.1M HCOOH, pH = 2.38

% ionization of a weak acid decreases as the initial concentration of the acid increases

Strong acid

Calculations Using Percent Ionization

1.) Niacin, one of the B vitamins, has the following structure: ${}^{\circ}$

a.) If a 0.020M solution has a pH of 3.26, what is the K_a for niacin?

A:1.6×10⁻⁵

b.) What is the percent ionization of the 0.020M solution?

2.) A 0.0100M solution of HNO₂ is 19% ionized at equilibrium. What is the Ka?

Polyprotic Acids

Acids that have more than one ionizable proton

lonize in successive steps

$$H_2CO_3(aq) + H_2O(I) \implies H_3O^+(aq) + HCO_3^-(aq)$$

$$HCO_3^-(aq) + H_2O(I) \implies H_3O^+(aq) + CO_3^{2-}(aq)$$

- Each step has its own K_a
- Easier to remove the first proton than the second, etc.
 - $K_{a1} > K_{a2} > K_{a3} \dots$
- Successive equilibrium constants have less and less impact on pH
 - May not need to use all K values to solve a problem

Polyprotic Acids

If the difference between the K_a values for the first and 2^{nd} , 3^{rd} , etc. K_a values is 10^3 or more, the pH generally depends on only the first dissociation.

Name	Formula	K_{a1}	K_{a2}	K_{a3}
Ascorbic	$H_2C_6H_6O_6$	8.0×10^{-3}	1.6×10^{-12}	
Carbonic	H_2CO_3	4.3×10^{-7}	5.6×10^{-11}	
Citric	$H_3C_6H_5O_7$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Oxalic	$H_2C_2O_4$	5.9×10^{-2}	6.4×10^{-5}	
Phosphoric	H_3PO_4	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
Sulfurous	H_2SO_3	1.7×10^{-2}	6.4×10^{-8}	
Sulfuric	H_2SO_4	Large	1.2×10^{-2}	
Tartaric	$H_2C_4H_4O_6$	1.0×10^{-3}	4.6×10^{-5}	

Polyprotic Acid Calculations

Calculate the pH of a 0.0050M solution of sulfuric acid.

Base Ionization Constant: K_b

Equilibrium constant for base dissociation

Weak bases react with water to produce hydroxide ions:

$$B(aq) + H2O(I) \Longrightarrow HB^{+}(aq) + OH^{-}(aq)$$

$$K_{eq} = \frac{[HB^{+}][OH^{-}]}{[B]} = K_{b}$$

K_b is the base ionization constant

- Quantitative measure of base strength
- Higher K_b = stronger base
- Sometimes discussed in terms of pK_b

$$pK_b = -log K_b$$

Types of Weak Bases

- Neutral substances that have an atom with a nonbonding pair of electrons
 - Examples include ammonia (NH₃) & amines
 - Amines described earlier in the chapter (slide 11)
- Anions (conjugate bases) of weak acids
 - Examples include HCO₃-, ClO-, HS-
 - Act as H⁺ acceptors in water
 - Anions of strong acids do not act as bases not an equilibrium process
- Insoluble/slightly soluble hydroxides
 - Soluble hydroxides are strong bases
 - Ca(OH)₂, Fe(OH)₃
 - Solubility equilibriums (K_{sp}) will be discussed in the next chapter

K_b Values for Some Common Weak Bases

Name of Base	Formula	Structure	K_b^*	Conjugate Acid	K_a
Ethylamine	C ₂ H ₅ NH ₂	CH ₃ —CH ₂ —N—H H	5.6×10^{-4}	$C_2H_5\overset{+}{N}H_3$	1.8×10^{-11}
Methylamine	CH ₃ NH ₂	CH ₃ —N—H H	4.4×10^{-4}	$CH_3\overset{+}{N}H_3$	2.3×10^{-11}
Ammonia	NH_3	H—N—H H	1.8×10^{-5}	NH_4^+	5.6×10^{-10}
Pyridine	C ₅ H ₅ N	N:	1.7×10^{-9}	C₅H₅NH	5.9×10^{-6}
Aniline	C ₆ H ₅ NH ₂	 -N—Н Н	3.8×10^{-10}	$C_6H_5\overset{+}{N}H_3$	2.6×10^{-5}
Caffeine	$C_8H_{10}N_4O_2$	O H ₃ C	5.3×10^{-14}	$C_8H_{11}\overset{+}{N}_4O_2$	0.19
Urea	(NH ₂) ₂ CO	O H—N—C—N—H H H	1.5×10^{-14}	$H_2NCON^+H_3$	0.67

K_a & K_b Relationship for Conjugate Acid/Base Pairs in Water

Base & water

$$NH_3 (aq) + H_2O(I) \implies NH_4^+(aq) + OH^-(aq) K_b = 1.8 \times 10^{-5}$$

 $pK_b = 4.74$

Conjugate acid & water

$$NH_4^+(aq) + H_2O(I) \Longrightarrow NH_3(aq) + H_3O^+(aq) K_a = 5.6x10^{-10}$$

 $pK_a = 9.26$

Add the two reactions together: multiply K values (Ch15)

$$2H_2O(I) \longrightarrow H_3O^+(aq) + OH^-(aq)$$

$$K_{w} = K_{a}xK_{b} = 1.0x10^{-14}$$

 $1.8x10^{-5} \times 5.6x10^{-10} = 1.0x10^{-14}$

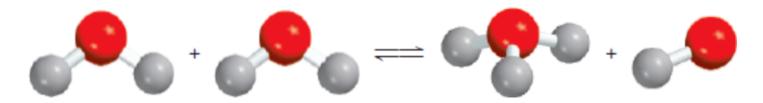
$$pK_a + pK_b = 14$$
 High K_a must have $9.26 + 4.74 = 14$ Low K_b & vice versa

Calculations Using K_b

1.) What is the pH of a 0.15M solution of NH₃? $K_b = 1.8 \times 10^{-5}$

2.) Codeine is a weak organic base. A $5.0 \times 10^{-3} M$ solution of codeine has a pH of 9.95. Calculate the pK_b and the value of K_b for this base.

3.) A solution of ammonia in water has a pH of 11.17. What is the molarity of the solution? $K_b = 1.8 \times 10^{-5}$


Acid-Base Properties of Salts

Salts are ionic compounds – contain cation (+) & anion (-)

- · Can be formed from acid/base neutralization
- Dissociate (separate into ions) when dissolve in water
- Can sometimes impact pH through hydrolysis

Hydrolysis:

- Hydro = water
- lysis = to cut
- Reactions that break water into H⁺ (H₃O⁺) & OH⁻

Extent to which a salt causes hydrolysis determines extent of its acid-base properties (if any)

Acid-Base Properties of Salts

Hydrolysis can be caused by both cations & anions, but does not happen in every situation

Salts formed from conjugates of a strong acid + a strong base do not cause hydrolysis

For salt solutions: no hydrolysis = neutral (no OH^- or H_3O^+)

NaCl(s)
$$\xrightarrow{H_2O}$$
 Na+(aq) + Cl-(aq) - no hydrolysis

NaOH HCl
strong base strong acid

LiNO₃(aq) \longrightarrow Li+(aq) + NO₃- (aq) - no hydrolysis

LiOH HNO₃
strong base strong acid

Acid-Base Properties of Salts

Soluble ions derived from a weak base or a weak acid will cause hydrolysis

Ex 1: NaOH: strong base
$$CH_3COOH$$
: weak acid $NaCH_3COO(s) \xrightarrow{H_2O} Na^+(aq) + CH_3COO^-(aq)$
 $CH_3COO^-(aq) + H_2O(l) \iff CH_3COOH(aq) + OH^-(aq)$

Ex 2: NH₃: weak base $CH_3COOH(aq) + OH^-(aq)$
 $CH_3COO^-(aq) + H_2O(l) \iff CH_3COOH(aq) + OH^-(aq)$

Determining if a Salt Solution is Acidic, Basic, or Neutral

Look at the ions that the salt dissociates into:

- If the base that would contain the cation is strong not acidic
- If the acid that would contain the anion is strong not basic
- If both cation & anion have a strong parent neutral
- If the base that would contain the cation is weak acidic
- If the acid that would contain the anion is strong basic
- If both cation & anion have a weak parent
 - Acidity/basicity depends on relative strength
 - Math can be complicated
 - Qualitatively:
 - \circ K_a < K_b basic solution
 - \circ K_a > K_b acidic solution
 - $K_a \approx K_b$ pretty close to neutral

Determining if a Salt Solution is Acidic, Basic, or Neutral

- 1.) Predict whether aqueous solutions of the following compounds are acidic, basic, or neutral.
- a.) NH₄NO₃
- b.) FeCl₃
- c.) Na₂CO₃
- d.) KCIO₄
- e.) ZnF₂

- 2.) For each of the following pairs, indicate which salt would form the more acidic (i.e. less basic) 0.010M solution.
- a.) NaNO₃ or $Fe(NO_3)_3$

b.) CH₃NH₃Cl or BaCl₂

c.) KNO₂ or KNO₃

d.) $(NH_4)_2SO_4$ or $(NH_4)_2SO_3$

3.) Calculate the [OH-] and pH of a 0.10M NaCN solution. K_a for HCN is 4.9×10^{-10} . A: [OH-] = 1.4×10^{-3} M pH = 11.16

4.) Calculate the pH of a 0.42M NH₄Cl solution. K_b for NH₃ is 1.8×10^{-5} A: pH = 4.82

60

What if an ion can act as either an acid or a base?

Occurs with salts from polyprotic acids such as H_2CO_3 , H_3PO_4 , H_2SO_4 .

Need to compare K_a and K_b values

Example: NaHCO₃

Acting as acid

•
$$HCO_3^-(aq) + 2H_2O(I) \longrightarrow CO_3^{2-}(aq) + H_3O^+(aq)$$

$$K_a = 4.8 \times 10^{-11}$$
Acting

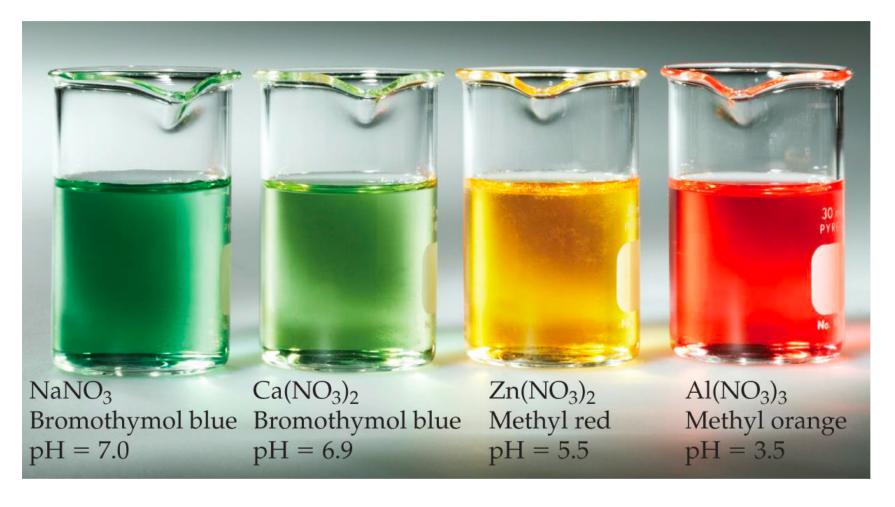
•
$$HCO_3^-(aq) + H_2O(I) \Longrightarrow H_2CO_3(aq) + OH^-(aq)$$

 $K_b = K_w/K_a = 2.4 \times 10^{-8}$

K_b > K_a so solution will be basic!

Hydration of Metal Ions

Salts with small, highly charged metal cations (e.g. Al³⁺, Fe³⁺, Cr³⁺, Be²⁺) and the conjugate base of a strong acid can also have acidic properties


Example:

AlCl₃ dissolved in water produces:

$$AI(H_2O)_6^{3+}(aq) + H_2O(I) \longrightarrow AI(OH)(H_2O)_5^{2+}(aq) + H_3O^{+}(aq)$$

 $K_a = 1.3 \times 10^{-5} \rightarrow Acid! + 3CI^{-}(aq)$

- e⁻ in water molecules are pulled toward metal ion
- O-H bonds in attached waters become more polarized
- H+ dissociates from water molecule forming H₃O+

Hydration of Metal Ions

Higher charge & smaller size make cations more acidic

$$Na^+ < Ca^{2+} < Zn^{2+} < Al^{3+}$$

Hydration of Metal Ions

Which member of each pair would produce a more acidic solution & why?

1.) CuCl or $Cu(NO_3)_2$

2.) CrCl₃ or NiCl₃