Chapter 18 Thermodynamics

Thermodynamics

Study of Energy Changes During Observed Processes $\Delta = change$

Enthalpy (H): Energy of reaction, often described in terms of heat (CHM 101)

Entropy (S): Measurement of disorder Free Energy (G):

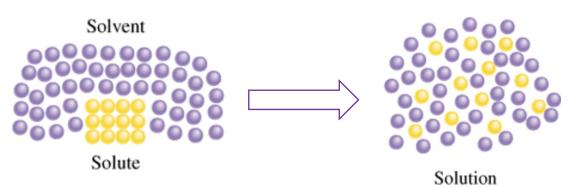
- Used to predict whether a process will occur spontaneously
- Spontaneously = without assistance
- Depends on enthalpy, entropy, and temperature

$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$

Some Enthalpies of Formation at 25°C

Substance	∆ <i>H</i> ° _f , kJ/mol	Ion	$\Delta H_{f}^{\circ}, \mathbf{kJ/mol}$
HCl(g)	-92.31	H+	0
HF(g)	-271.1	Na ⁺	-240.1
HI(g)	26.48	K ⁺	-252.4
$H_2O(g)$	-241.8	NH4 ⁺	-132.5
$H_2O(1)$	-285.8	Ag ⁺ Mg ²⁺ Ca ²⁺	+105.6
$NH_3(g)$	-46.11	Mg ²¹	-466.9
NO(g)	90.25	Ba ²⁺	-542.8 -537.6
$N_2O(g)$	82.05	OH ⁻	-230.0
$NO_2(g)$	33.18	Cl⁻	-167.2
$N_2O_4(g)$	9.16	NO_3^-	-205.0
$SO_2(g)$	-296.8	CO_{3}^{2-}	-677.1
$SO_2(g)$ $SO_3(g)$	-395.7	SO4 ²⁻	-909.3

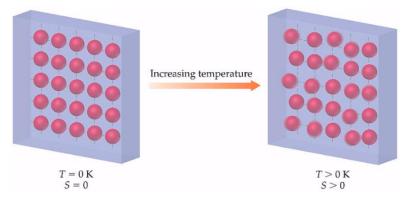
All ΔH_f are for standard conditions 25°C, 1 atm, 1M aqueous solution, 1 mole product


Three Laws of Thermodynamics

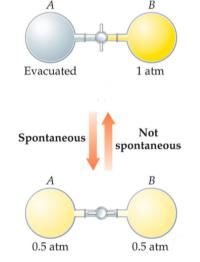
First Law of Thermodynamics:

- Energy cannot be created or destroyed
- The total energy of the Universe must be constant
- Energy can be converted from one form to another, or transferred between systems & surroundings

Second Law of Thermodynamics:


- The entropy of the Universe ($\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$) increases for spontaneous processes
- For spontaneous (irreversible) processes: $\Delta S_{univ} > 0$
- For reversible processes: $\Delta S_{univ} = 0$

Three Laws of Thermodynamics


Third Law of Thermodynamics:

- The entropy of a pure crystalline substance at absolute zero (OK) is zero.
- Scientists have come close to absolute zero, but 0K has not yet been achieved
- At 0K there is absolutely no molecular movement
- Provides a starting point for determining ΔS
 - Start as close to 0K as possible, warm material up to a specific temperature and calculate ΔH
 - $S = \Delta H/T$
 - Note: Since S is temp. dependent, to use this equation the process must be isothermal.

Spontaneous Processes

- Processes that are spontaneous in one direction are non-spontaneous in the other direction.
- Spontaneous processes can be fast (e.g. explosion) or slow (e.g. rusting)
- Spontaneity generally temperature dependent
 - > 0°C, ice melting is spontaneous
 - < 0°C, ice freezing is spontaneous

Water flows naturally downhill but must be pumped uphill

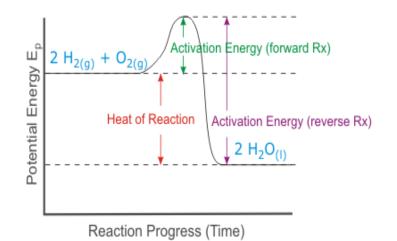
Spontaneous

Nonspontaneous

Spontaneous for $T > 0^{\circ}C$

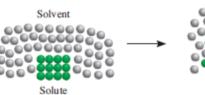
Enthalpy & Spontaneity

Reaction of H₂ & O₂ to from H₂O


- Used in fuel cells
- Exothermic reaction
- ΔH = -286 kJ/mol
- Favors H₂O production

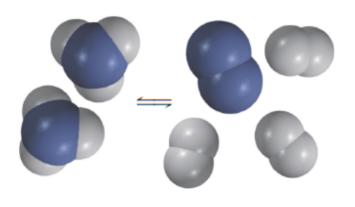
Reality at room temp:

- Not a spontaneous reaction
- H₂ & O₂ remain unreacted
- No water is formed without added energy to initiate
- $E_{act} = +112 kJ/mol too high$



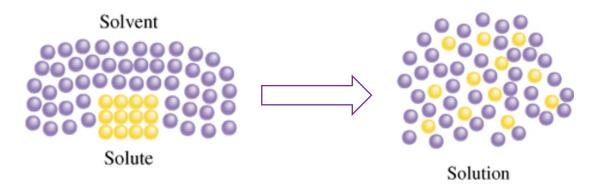
 $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$

Enthalpy determines the equilibrium state, but enthalpy alone does NOT determine spontaneity Also need to consider entropy


Entropy (S)

Entropy is defined as a measure of the randomness or disorder of a system

- It is related to the various modes of motion in molecules (or of ions/atoms)
- Entropy is a state function (like enthalpy & total energy)
 - State functions are defined by final-initial conditions (independent of process)
 - $\Delta S = S_{\text{final}} S_{\text{initial}}$
- Entropy is increased when, for example:
 - Moles of products > moles of reactants
 - More complex molecules are broken down into smaller, simpler molecules
 - There is a phase change to a more disordered phase (disorder: gas>liquid>solid)



Spontaneous Processes

Which of the following processes are spontaneous?

- (a) Separating a mixture of N_2 and O_2 into two separate samples
- (b) Alignment of iron filings in a magnetic field
- (c) Dissolution of HCl(g) in water to form HCl(aq)
- (d) Sublimation of CO₂(s) at -100°C, 1 atm (CO₂ sublimation point is -78°C, 1 atm)
- (e) Reaction of copper with oxygen to form CuO under typical environmental conditions in RI.

Entropy & Solvation

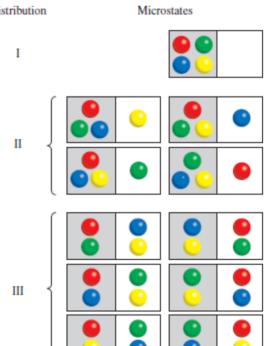
Generally, dissolving a solute in a solvent <u>increases</u> entropy

<u>However</u>:

When solutes are dissolved, the water molecules around them have less ability to move due to interactions with the solute (H-bonds, ion-dipole interactions, etc.).

In some cases (especially with large ions) this may result in an overall decrease in entropy.

Entropy & Microstates


Entropy is related to the number of "microstates" through the equation:

 $S = k \ln W$

k = Boltzmann constant (1.38x10⁻²³ J/K)W = # microstates.

$$\Delta S = S_f - S_i$$

= k In W_f - k In W_i
= k In (W_f/W_i)

Microstate is a term used to describe the number of ways that a given state can be achieved.

More possible variation = More microstates = Higher S

Predicting Entropy Changes

Indicate whether the following produces an increase or decrease in the entropy of the system:

(a) $CO_2(s) \rightarrow CO_2(g)$

(b) $CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$

(c) $NH_4CI(s) \rightarrow HCI(g) + NH_3(g)$

(d) NaCl(s) \rightarrow NaCl(aq)

Some Standard Molar Entropy Values (larger table in Appendix 2 of Textbook)

Standard Entropy Values (*S*°) for Some Substances at 25°C

C°

Substance	S°
Substance	$(J/K \cdot mol)$
$H_2O(l)$	69.9
$H_2O(g)$	188.7
$Br_2(l)$	152.3
$\operatorname{Br}_2(g)$	245.3
$I_2(s)$	116.7
$I_2(g)$	260.6
C (diamond)	2.4
C (graphite)	5.69
CH ₄ (methane)	186.2
C2H6 (ethane)	229.5
$\operatorname{He}(g)$	126.1
Ne(g)	146.2

3 gas > 3 liquid > 3 solid	
For similar molecules S° tends to increase with:	,

< C°< C°

- Increasing molar mass
- Increased number of atoms in formula

Standard Molar Entropies of Selected Substances at 298 K		
Substance	S°, J/mol-K	
Gases		
$H_2(g)$	130.6	
$N_2(g)$	191.5	
$O_2(g)$	205.0	
$H_2O(g)$	188.8	
$NH_3(g)$	192.5	
Liquids		
$H_2O(l)$	69.9	
$CH_3OH(l)$	126.8	
$C_6H_6(l)$	172.8	
Solids		
Li(s)	29.1	
Na(s)	51.4	
K(s)	64.7	
Fe(s)	27.23	
$FeCl_3(s)$	142.3	
NaCl(s)	72.3	

CHM 101 Review: Calculating Reaction Enthalpy from Standard Enthalpies of Formation

 $\Delta H_{\text{reaction}} = \Sigma \Delta H_{\text{products}} - \Sigma \Delta H_{\text{reactants}}$ ($\Sigma = \text{sum}$)

 $C_2H_5OH(I)+3 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$

- ΔH_{f}° Reactants:
- C₂H₅OH (I): -277.7 kJ/mol x 1 = -277.7 kJ/mol
- O₂: 0.0 kJ/mol x 3 = 0.0 kJ/mol
- Total reactants = -277.7kJ/mol + 0.0kJ/mol = -277.7kJ/mol
- ΔH_{f}° Products
- CO₂(g): -393.5 kJ/mol x 2 = -787.0kJ/mol
- H₂O(I): -285.8 kJ/mol x 3 = -857.4kJ/mol
- Total products = -787.0kJ/mol + -857.4kJ/mol = -1644.4kJ/mol
- $\Delta H^{\circ} = \Sigma \Delta H_{\text{products}} \Sigma \Delta H_{\text{reactants}}$ = -1644.4kJ/mol - (-277.7kJ/mol) = -1366.7kJ/mol

Calculating Reaction <u>Entropy</u> from Standard <u>Entropies</u>

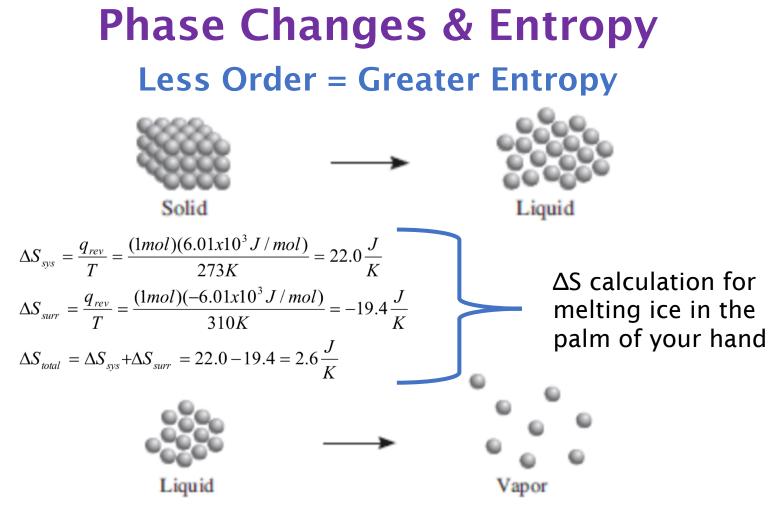
 $\Delta S_{reaction} = \Sigma S^{\circ}_{products} - \Sigma S^{\circ}_{reactants} \qquad (\Sigma = sum)$ $C_2 H_5 OH(I) + 3 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$

S° Reactants:

- C₂H₅OH (I): 161.2 J/mol K x 1 = 161.2 J/mol K
- O₂: 205.0 J/mol K x 3 = 615.0 J/mol K
- Total reactants = 161.2 J/mol K + 615.0 J/mol K=776.2 J/mol K

S° Products

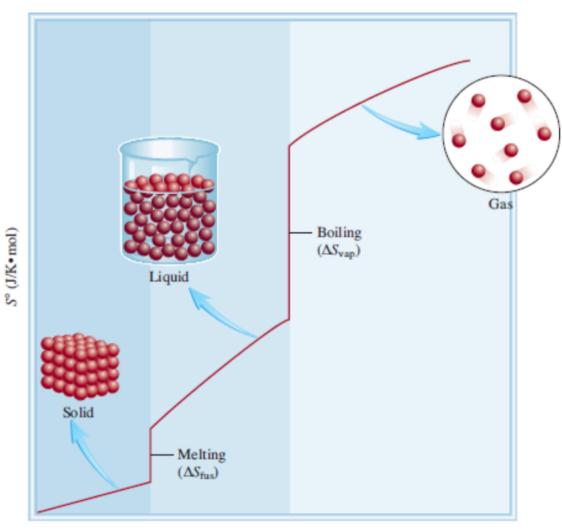
- CO₂(g): 213.6 J/mol K x 2 = 427.2 J/mol K
- H₂O(I): 69.9 J/mol K x 3 = 209.7 J/mol K
- Total products = 427.2 J/mol K + 209.7 J/mol K =636.9 J/mol K
- $\Delta S^{\circ} = \Sigma S_{\text{products}} \Sigma S_{\text{reactants}}$ = 636.9 J/mol K - 776.2 J/mol K) = -139.3 J/mol K


Calculating Reaction Entropy from Standard Entropies

1. What is the molar change in entropy for water freezing at 25°C? A: -28.9 J/mol K

2. What is the standard entropy change for the following reaction? A: 178.7 J/mol K Al₂O₃ (s) + 3H₂(g) \rightarrow 2 Al(s) + 3H₂O(g)

Calculating Entropy (S) from AH


The normal boiling point of ethanol (C_2H_5OH , 46.07g/mol) is 78.3°C and its molar enthalpy of vaporization is 38.56 kJ/mol. What is the change in entropy in the system when 68.3g of gaseous ethanol at 1 atm condenses to liquid at the normal boiling point? A: -163 J/K

Melting & Vaporization are favored by entropy

Freezing & Condensation (exothermic) are favored by enthalpy

What determines which process will occur?

Temperature (K)

Spontaneity is Temperature Dependent!

Gibbs Free Energy (G)

The maximum useful work that can be done by a system on its surroundings in a spontaneous process at constant T & P.

$\Delta \mathbf{G} = \mathbf{\Delta} \mathbf{H} - \mathbf{T} \mathbf{\Delta} \mathbf{S}$

The equation comes from thermodynamic principles

Eq1: $\Delta S_{univ}^{\circ} = S_{surr}^{\circ} + S_{sys}^{\circ}$ Eq2: $\Delta S_{surr}^{\circ} = -\Delta H_{sys}/T$ Substitute Eq2 for S_{surr}° $\Delta S_{univ}^{\circ} = (-\Delta H_{sys}/T) + S_{sys}^{\circ}$ Multiply by -T to get $-T\Delta S_{univ}^{\circ} = \Delta H_{sys} - T\Delta S_{sys}$ Let $-T\Delta S_{univ}^{\circ} = \Delta H - T\Delta S$

Standard Free Energy, ΔG°

Free energy change when reactants and products are in their standard states

(pure material, 1 atm, 1M if in solution, zero for elements in standard state)

 $\Delta G^{\circ}_{reaction} = \Sigma G_{f}^{\circ}_{products} - \Sigma G_{f}^{\circ}_{reactants}$

Gibbs Free Energy & Spontaneity

 $\Delta G < 0$ (negative), the process is spontaneous

 $\Delta G > 0$ (positive), the process is non-spontaneous

 $\Delta G = 0$ the process is at equilibrium

ΔS ΔG ΔΗ **Spontaneous?** negative positive negative yes positive positive negative no negative negative ? **Temp Dependent** positive positive **Temp Dependent** ?

Gibbs Free Energy & Spontaneity

How Signs of ΔH and ΔS Affect Reaction Spontaneity				
ΔH	ΔS	$-T\Delta S$	$\Delta G = \Delta H - T \Delta S$	Reaction Characteristics
-	+		-	Spontaneous at all temperatures
+	-	+	+	Nonspontaneous at all temperatures
_	-	+	+ or -	Spontaneous at low <i>T</i> ; nonspontaneous at high <i>T</i>
+	+		+ or -	Spontaneous at high <i>T</i> ; nonspontaneous at low <i>T</i>

Gibbs Free Energy & Spontaneity

1. A certain reaction has $\Delta H^{\circ} = -19.5 \text{ kJ}$ and $\Delta S^{\circ} = 42.7 \text{ J/K}$. (a) Is the reaction exothermic or endothermic? A: exothermic

(b) Does the reaction lead to an increase or decrease in the randomness or disorder of the system? A: increase

(c) Calculate ΔG° at 298K A: -32.2kJ

(d) Is the reaction spontaneous at 298K under standard conditions? A: yes

2. Is the following process spontaneous at 25°C? at 75°C? $Ca_3(PO_4)_2(s) \implies 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$ A: no

Step 1: Calculate ΔH

Step 2: Calculate ΔS

Step 3: Calculate ΔG

3. At what temperature will the following process become spontaneous?

 $Ca_3(PO_4)_2(s) \implies 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$

Free Energy & Equilibrium

During a reaction, not all of the reactants and products will be in their standard state. Under any conditions (standard or nonstandard), the free energy change is:

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

 $R = 8.314 \times 10^{-3} \text{ kJ/mol K}$

T = temperature in K

Q = reaction quotient

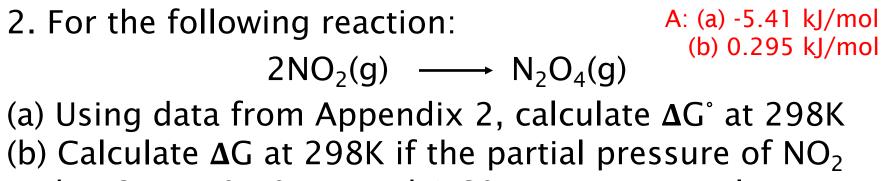
(Under standard conditions, all concentrations are 1M, so Q = 1, InQ = 0, and $\Delta G = \Delta G^{\circ}$)

At equilibrium: $\Delta G = 0$ and Q = K (K is equilibrium constant) So the equation becomes: $0 = \Delta G^{\circ} + RT \ln K$ Therefore, at equilibrium: $\Delta G^{\circ} = -RT \ln K$

Free Energy & Equilibrium

K	ln K	ΔG°	Comments
> 1	Positive	Negative	Products are favored over reactants at equilibrium.
= 1	0	0	Products and reactants are equally favored at equilibrium.
< 1	Negative	Positive	Reactants are favored over products at equilibrium.

 $\Delta G^{\circ} < 0$ (negative), the forward reaction is spontaneous


 $\Delta G^{\circ} > 0$ (positive), the reverse reaction is spontaneous

 $\Delta G^{\circ} = 0$ the reaction is at equilibrium

The magnitude of ΔG° indicates how far the standard state is from equilibrium (more negative $\Delta G^{\circ} = \text{larger K}$)

Free Energy & Equilibrium

1. Calculate ΔG° for the following reaction at 25°C. Fe(OH)₂(s) \longrightarrow Fe²⁺(aq) + 2OH⁻(aq) K_{sp} for Fe(OH)₂ is 1.6x10⁻¹⁴ A: 79kJ/mol

and N_2O_4 are 0.40atm and 1.60atm, respectively.

3. Compare the molar solubility of lead chloride at 25°C and 90°C. From Table:

 $PbCl_2(s) \iff Pb^{2+}(aq) + 2Cl^{-}(aq)$

 K_{sp} for PbCl₂ is 1.6x10⁻⁵ at 25°C

```
\Delta H_{f}^{\circ}(kJ/mol) S° (J/molK)
PbCl_2(s) = -359 PbCl_2(s) = 136
Pb^{2+}(aq) = -1.7
Cl^{-}(aq) = -167.2
```

 $Pb^{2+}(aq) = 10.5$ $Cl^{-}(aq) = 56.5$

A: solubility at 90°C about double the solubility at 25°C