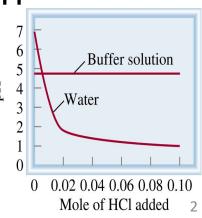
Chapter 17

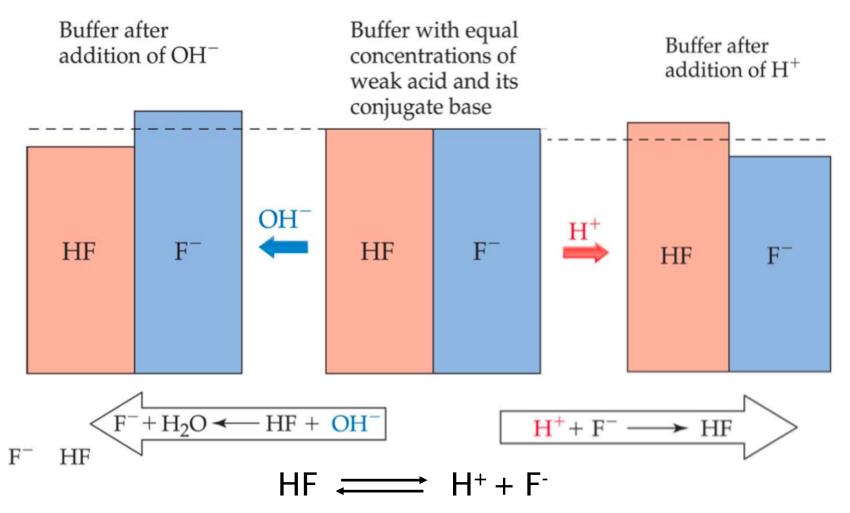
Acid – Base Equilibria & Solubility Equilibria

www2.onu.edu

Buffer Solutions (Buffers)

Solutions that resist changes in pH when small amounts of acid or base are added


- Must contain a <u>weak</u> acid or base <u>and</u>
- The <u>conjugate</u> (salt) of the weak acid or base
- i.e. Contain a weak conjugate acid/base pair
- pH is controlled by equilibrium [K_a (or K_b)] HA + H₂O \longrightarrow H₃O⁺ + A⁻


When small amounts of a strong acid or base are added:

• Acidic species in buffer neutralizes added OH HA + OH⁻ \longrightarrow H₂O + A⁻

• Basic species in buffer neutralizes added H^+_{\mp} $A^- + H_3O^+ \longleftarrow H_2O + HA$

How Buffers Work – Le Châtelier's Principle

- Add OH⁻, reduce H⁺, shift equilibrium toward conj. Base
 - OH⁻ will react with H⁺ to form water
- Add H⁺, shift equilibrium toward undissociated acid

Henderson-Hasselbalch Equation

$$pH = pK_a + log \frac{[A^{\cdot}]}{[HA]}$$

Comes from the equilibrium expression for: $HA \rightleftharpoons H^+ + A^-$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \longrightarrow K_{a} = [H^{+}]\frac{[A^{-}]}{[HA]}$$

Take the -log of both sides:Conj. base-log Ka = -log [H+] + -log $\frac{[A-]}{[HA]}$ acidpKapHacidTherefore:pKa = pH + -log $\frac{[A-]}{[HA]}$ For bases:pKa = pH + -log $\frac{[A-]}{[HA]}$ pOH = pKb + -log $\frac{[BH+]}{[B]}$

Rearrange to get Henderson-Hasselbalch

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$ Ice Table Method

pH = 3.27 ⁵

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$

H-H equation method:

Using the Henderson-Hasselbalch Equation

2. How many grams of sodium lactate (CH₃CH(OH)COONa) should be added to 1.0L of a 0.150M lactic acid (CH₃CH(OH)COOH) to form a buffer solution with pH=4.00? $K_a = 1.4 \times 10^{-4}$; molar mass of sodium lactate = 112.1g/mol

Buffer Capacity

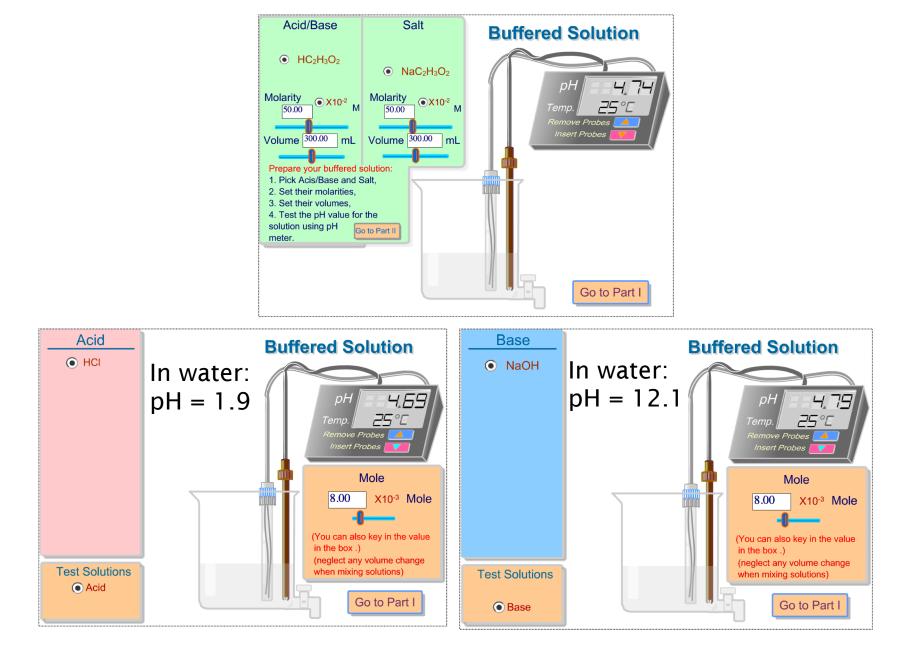
Buffer Capacity: The amount of acid or base a buffer can neutralize before there is a significant change in pH.

- Ratio of weak base to weak acid ([A⁻]/[HA]) should be between 0.1 & 10.
- Most effective when $[A^-] = [HA]$ (i.e. ratio = 1)
 - Equal ability to neutralize acids & bases
- Buffer capacity depends on:
 - K_a of the acid
 - Concentration of buffer components
 - More concentrated = higher capacity

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

pH Range

pH Range: The range of pH values over which a buffer system works effectively


- Best to choose an acid with a pK_a close to the desired pH
- If $[A^-] = [HA]$, then $pH = pK_a$

$$pH = pK_a + log [HA]$$
 $log (1) = 0$

• Buffer generally usable withing ± 1 pH unit of the pK_a

Criteria for Making a Buffer

- 1. Choose a weak acid & conjugate base
 - Must have the same anion!
 - ex. HNO₂ & NaNO₂; HF & LiF
- 2. Select acid based on desired pH range
 - $pK_a < 7$ buffer is acidic; $pK_a > 7$ buffer is basic
 - Buffers can usually be adjusted to ±1 desired pH
- 3. Buffer salts (conjugate base) must be soluble & dissociate completely
 - Most commonly sodium or potassium salts
 - NH₄⁺ salts are acidic because NH₄⁺ dissociates
- 4. Concentrations of [HA] & [A⁻] > 0.01M
 - Must be able to neutralize sufficient acid/base
 - Can use ICE table to get an idea of what concentration is needed.

https://pages.uoregon.edu/tgreenbo/pHbuffer20.html

Buffer calculations

1. A 1.0 L buffer solution contains 0.150 M nitrous acid and 0.200 M sodium nitrite. $K_a = 7.2 \times 10^{-4}$ (a) What is the pH of the buffer? (b) What is the pH after adding 1.00 g HBr?

Buffer calculations

2. A buffer is made by adding 0.600 mol CH₃COOH and 0.600 mol CH₃COONa to enough water to make 2.00L of solution. $K_a = 1.8 \times 10^{-5}$.

(a) What is the pH of the buffer? A: 4.74

(b) Calculate the pH after 0.040 mol HCl is added. A: 4.69

(c) Calculate the pH after 0.040 mol NaOH is added. A: 4.80