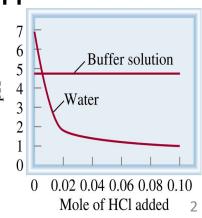
Chapter 17

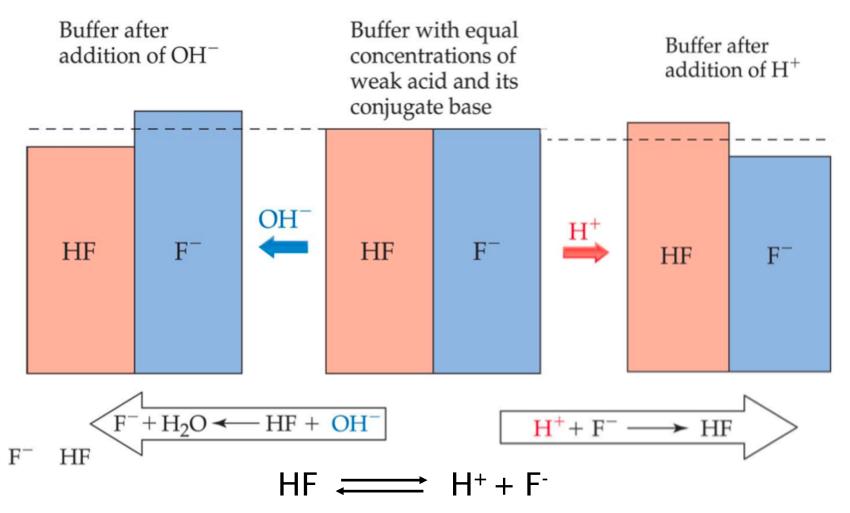
Acid – Base Equilibria & Solubility Equilibria

www2.onu.edu

Buffer Solutions (Buffers)

Solutions that resist changes in pH when small amounts of acid or base are added


- Must contain a <u>weak</u> acid or base <u>and</u>
- The <u>conjugate</u> (salt) of the weak acid or base
- i.e. Contain a weak conjugate acid/base pair
- pH is controlled by equilibrium [K_a (or K_b)] HA + H₂O \longrightarrow H₃O⁺ + A⁻


When small amounts of a strong acid or base are added:

• Acidic species in buffer neutralizes added OH HA + OH⁻ \longrightarrow H₂O + A⁻

• Basic species in buffer neutralizes added H^+_{\mp} $A^- + H_3O^+ \longleftarrow H_2O + HA$

How Buffers Work – Le Châtelier's Principle

- Add OH⁻, reduce H⁺, shift equilibrium toward conj. Base
 - OH⁻ will react with H⁺ to form water
- Add H⁺, shift equilibrium toward undissociated acid

Henderson-Hasselbalch Equation

$$pH = pK_a + log \frac{[A^{\cdot}]}{[HA]}$$

Comes from the equilibrium expression for: $HA \rightleftharpoons H^+ + A^-$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \longrightarrow K_{a} = [H^{+}]\frac{[A^{-}]}{[HA]}$$

Take the -log of both sides:Conj. base-log Ka = -log [H+] + -log $\frac{[A-]}{[HA]}$ acidpKapHacidTherefore:pKa = pH + -log $\frac{[A-]}{[HA]}$ For bases:pKa = pH + -log $\frac{[A-]}{[HA]}$ pOH = pKb + -log $\frac{[BH+]}{[B]}$

Rearrange to get Henderson-Hasselbalch

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$ Ice Table Method

pH = 3.27 ⁵

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$

H-H equation method:

Using the Henderson-Hasselbalch Equation

2. How many grams of sodium lactate (CH₃CH(OH)COONa) should be added to 1.0L of a 0.150M lactic acid (CH₃CH(OH)COOH) to form a buffer solution with pH=4.00? $K_a = 1.4 \times 10^{-4}$; molar mass of sodium lactate = 112.1g/mol

Buffer Capacity

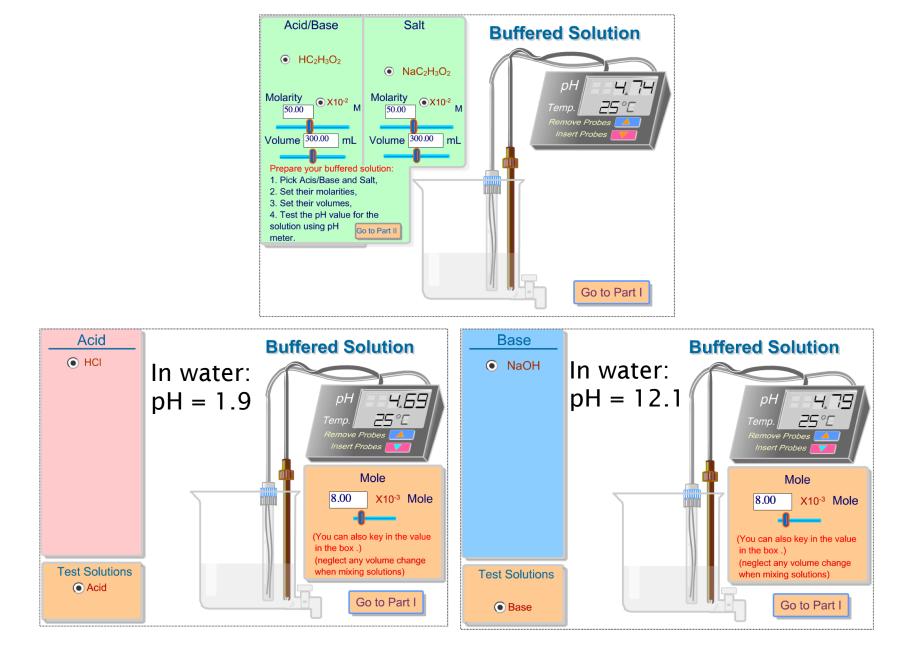
Buffer Capacity: The amount of acid or base a buffer can neutralize before there is a significant change in pH.

- Ratio of weak base to weak acid ([A⁻]/[HA]) should be between 0.1 & 10.
- Most effective when $[A^-] = [HA]$ (i.e. ratio = 1)
 - Equal ability to neutralize acids & bases
- Buffer capacity depends on:
 - K_a of the acid
 - Concentration of buffer components
 - More concentrated = higher capacity

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

pH Range

pH Range: The range of pH values over which a buffer system works effectively


- Best to choose an acid with a pK_a close to the desired pH
- If $[A^-] = [HA]$, then $pH = pK_a$

$$pH = pK_a + log [HA]$$
 $log (1) = 0$

• Buffer generally usable withing ± 1 pH unit of the pK_a

Criteria for Making a Buffer

- 1. Choose a weak acid & conjugate base
 - Must have the same anion!
 - ex. HNO₂ & NaNO₂; HF & LiF
- 2. Select acid based on desired pH range
 - $pK_a < 7$ buffer is acidic; $pK_a > 7$ buffer is basic
 - Buffers can usually be adjusted to ±1 desired pH
- 3. Buffer salts (conjugate base) must be soluble & dissociate completely
 - Most commonly sodium or potassium salts
 - NH₄⁺ salts are acidic because NH₄⁺ dissociates
- 4. Concentrations of [HA] & [A⁻] > 0.01M
 - Must be able to neutralize sufficient acid/base
 - Can use ICE table to get an idea of what concentration is needed.

https://pages.uoregon.edu/tgreenbo/pHbuffer20.html

1. A 1.0 L buffer solution contains 0.150 M nitrous acid and 0.200 M sodium nitrite. $K_a = 7.2 \times 10^{-4}$ (a) What is the pH of the buffer? (b) What is the pH after adding 1.00 g HBr?

2. A buffer is made by adding 0.600 mol CH₃COOH and 0.600 mol CH₃COONa to enough water to make 2.00L of solution. $K_a = 1.8 \times 10^{-5}$.

(a) What is the pH of the buffer? A: 4.74

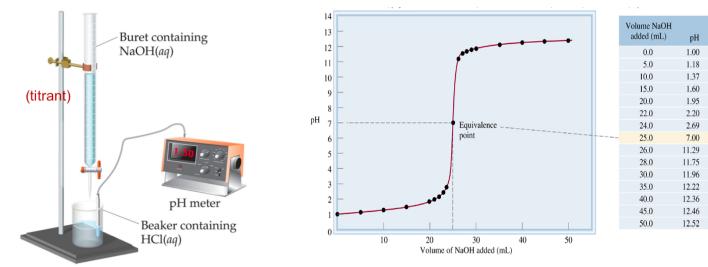
(b) Calculate the pH after 0.040 mol HCl is added. A: 4.69

(c) Calculate the pH after 0.040 mol NaOH is added. A: 4.80

2. A buffer is made by adding 0.600 mol CH₃COOH and 0.600 mol CH₃COONa to enough water to make 2.00L of solution. $K_a = 1.8 \times 10^{-5}$.

- (a) What is the pH of the buffer? A: 4.74
- (b) Calculate the pH after 0.040 mol HCl is added. A: 4.69

2. A buffer is made by adding 0.600 mol CH₃COOH and 0.600 mol CH₃COONa to enough water to make 2.00L of solution. $K_a = 1.8 \times 10^{-5}$.

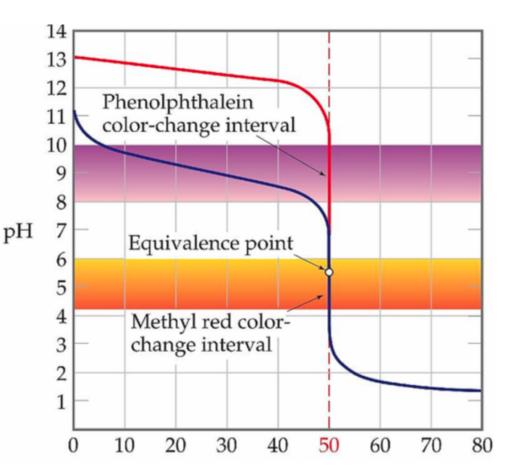

(a) What is the pH of the buffer? A: 4.74

(c) Calculate the pH after 0.040 mol NaOH is added. A: 4.80

Titration

A technique where a known concentration of acid (or base) is added to a solution of base (or acid).

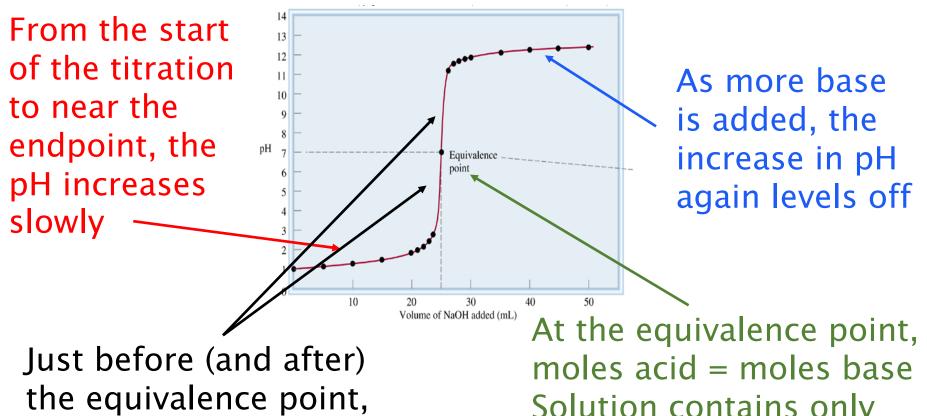
- Used to determine the concentration of an unknown
- In CHM 101 we looked at <u>strong</u> acid/base systems
 - No equilibrium
 - Equivalence point is pH 7
- Indicators or pH meters are used to determine the equivalence point.


(analyte)

Titration Terminology

Equivalence Point:

Point at which the stoichiometric amount of acid and base are equal.

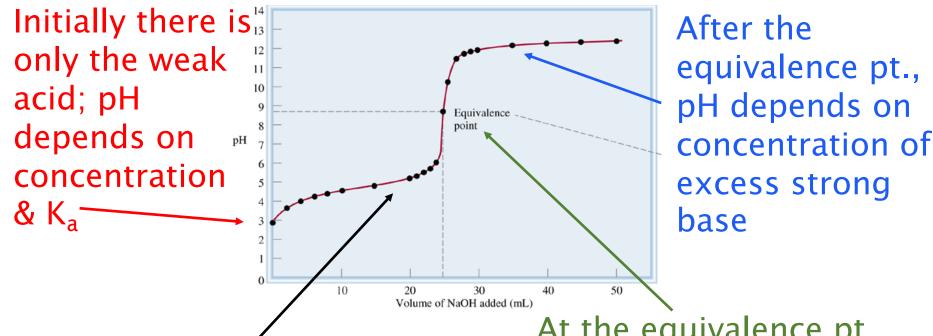

End Point: Point in the titration where the indicator changes color.

Solving More Complex Titration Problems

- 1. Read the question carefully to see what it is asking
 - pH or concentration at a particular point
 - Moles or molarity of original solution
 - pH or volume at equivalence point
- 2. Identify all reactants and products
 - Write the balanced equation
 - Use stoichiometry to determine amounts of products
 - Identify whether the solution is acidic or basic
- 3. Determine whether it is an equilibrium process
 - You will have at most one equilibrium
 - Strong acids/bases just stoichiometry
 - Weak acids/bases stoichiometry + equilibrium
- 4. Volume increases during titrations so be aware that there will likely be changes in concentration due to volume as well as due to the neutralization reaction.

Titration of a Strong Acid with a Strong Base NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l) OH⁻(aq) + H⁺(aq) \rightarrow H₂O(l)

the pH increases rapidly

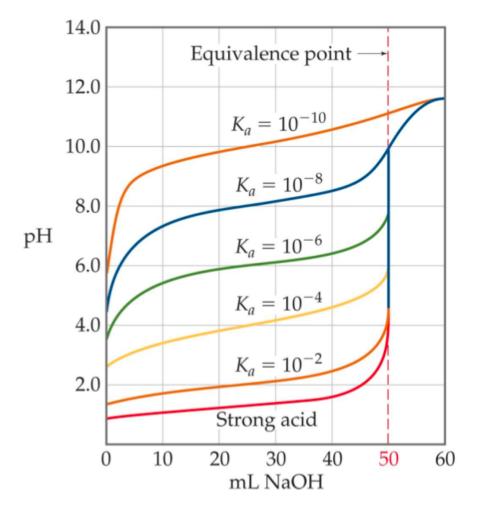

Solution contains only water and salt (neutral)

Both strong = NO EQUILIBRIUM

Strong Acid/Strong Base Calculations

- In the titration of 25.0mL of 0.100M KOH with 0.100M HNO₃, determine the pH:
- (a) At the start of the titration (no acid added) A:13.0
- (b) When 24.9mL acid has been added A: 10.3
- (c) When 25.1mL acid has been added A: 3.7

Titration of a Weak Acid with a Strong Base NaOH(aq) + CH₃COOH(aq) \iff CH₃COONa(aq) + H₂O(l) CH₃COO⁻(aq) + H₂O(l) \iff CH₃COOH(aq) + OH⁻(aq)



Before the equivalence pt., the solution contains both the weak acid & its conjugate base

At the equivalence pt. (moles acid = moles base) pH is >7 because the conjugate base of the acid affects the pH

pH depends on stoichiometry & Equilibrium!

Titration of a Weak Acid with a Strong Base

With weak acids:

- Initial pH is higher
- pH changes near the equivalence point are more subtle (smaller)
- pH > 7 at equivalence point due to the formation of a basic salt (conjugate base of weak acid; ex: CH₃COONa

- Things to Keep in Mind
- 1. Acid/Base titration always gives a salt & water
 - $HA + OH \implies A^{-} + H_2O$
- 2. Initial pH only depends on the weak acid
 - K_a/equilibrium & concentration
- 3. Addition of base up to just before equivalence point
 - Added base is strong not the conjugate of the weak acid
 - Solution contains weak acid & its conjugate base (salt) all of the strong base is used up in the neutralization
 - First use stoichiometry to determine how many moles of the acid have been neutralized
 - Determine the new concentration of acid based on moles remaining and <u>new volume (if base is added as a solution</u>)
 - Use the equilibrium expression to determine [H₃O⁺] (can also use H-H if want pH)
- 4. Whether or not volume increases depends on added base if the base is in solution, volume increases

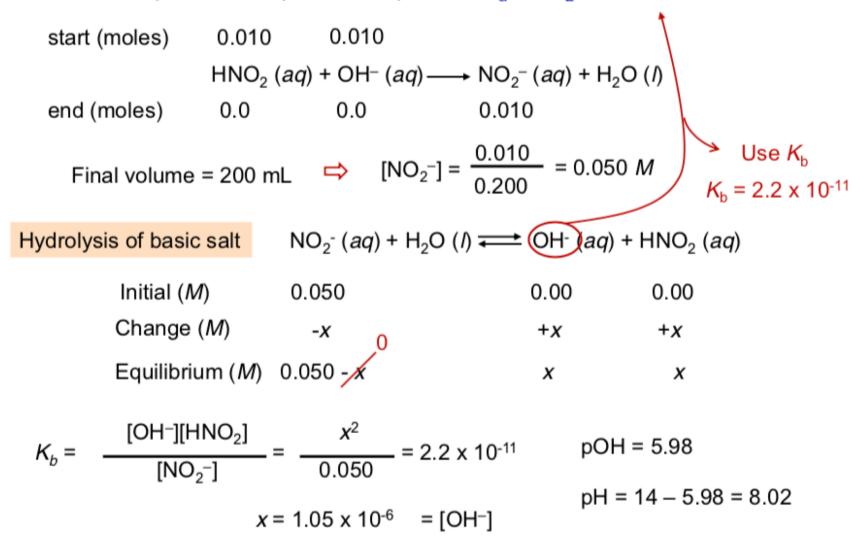
Weak Acid/Strong Base Calculations Things to Keep in Mind con't

- 4. At equivalence point: <u>all initial acid & added base are</u> <u>neutralized</u> the solution only contains the salt
 - The salt will be basic it is the product of a weak acid & a strong base
 - The basic salt will react with water to produce OH⁻
 - $A^- + H_2O \implies HA + OH^-$
 - Since the solution is basic need to use K_b & equilibrium to get the OH⁻ concentration
 - Moles acid neutralized = initial moles acid = moles salt formed.
 - Use total volume to get concentration.
- 5. After equivalence point: <u>only excess strong base</u> <u>matters</u>
 - pH depends on moles of excess strong base & total volume. Strong so NO EQUILIBRIUM!

- 35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:
- a.) At the start of the titration A: 2.78
- b.) When 20.0mL of 0.150M NaOH has been added A:4.87
- c.) At the equivalence point A: 8.81
- d.) When 50.0mL of 0.150M NaOH has been added A: 12.42

35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

b.) When 20.0mL of 0.150M NaOH has been added A:4.87

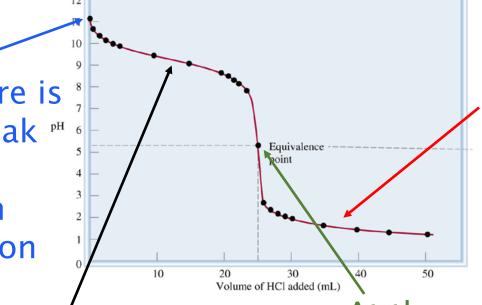

35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

c.) At the equivalence point A: 8.81

35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

d.) When 50.0mL of 0.150M NaOH has been added A: 12.42

When 100.0 mL of 0.10 *M* HNO₂ are titrated with a 0.10 *M* NaOH solution, what is the pH at the equivalence point? K_a HNO₂ = 4.5 x 10⁻⁴



Titration of a Weak Base with a Strong Acid

 $HCI(aq) + NH_3 (aq) \implies NH_4^+ (aq) + CI^-(aq)$

 $NH_4^+(aq) + H_2O(I) \implies NH_3(aq) + H_3O^+(aq)$

Initially there is only the weak ™ base; pH depends on concentration & K_b

After the equivalence pt., pH depends on concentration of excess strong acid

Before the equivalence pt., the solution contains the weak base & its conjugate acid At the equivalence pt. (moles acid = moles base) pH is < 7 because the conjugate acid of the base affects the pH

pH depends on stoichiometry & Equilibrium!

Weak Base/Strong Acid Calculations

30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCl. Determine the pH:

- a.) At the start of the titration A: 10.87
- b.) When 20.0mL of 0.0250M HCl has been added A: 9.16
- c.) At the equivalence point A: 5.56
- d.) When 37.0mL of 0.025M HCl has been added A: 3.43
 - a.) At the start of the titration (no acid added) just a solution of a weak base pH depends on concentration & equilibrium

 NH_3 (aq) + H_2O (I) \implies NH_4^+ (aq) + OH^- (aq)

I	0.03M	0	0	$K_b = \frac{x^2}{0.0300} = 1.8 \times 10^{-5}$
С	-x	+x	+x	
E	0.03-x	X	X	
	$x^2 = 5.4 \times 10^{-7}$	рОН	= -log (7.	$35 \times 10^{-4}) = 3.13$

 $x = 7.35 \times 10^{-4} = [OH^{-}]$ pH = 14 - 3.13 = 10.87

Weak Base/Strong Acid Calculations 30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCl. Determine the pH: b.) When 20.0mL of 0.0250M HCI has been added A: 9.16 • All added HCl is used in the titration – need to determine how much NH₃ remains & how much NH₄⁺ has been produced. NH_3 (aq) + HCl (aq) \rightarrow $H_2O(l)$ + $Cl^-(aq)$ + $NH_4^+(aq)$ $0.0300 \frac{mol}{I} NH_3 \times 0.0300L = 9.00 \times 10^{-4} mol NH_3 initial$ $0.0250 \frac{mol}{L} \times 0.0200L = 5.00 \times 10^{-4} mol \, HCl \, added$ $5.00 \times 10^{-4} mol \, HCl \, x \, \frac{1 \, mol \, NH_3}{1 \, mol \, HCl} = 5.00 \times 10^{-4} mol \, NH_3 \, neutralized$ $9.00x10^{-4}$ mol init. $-5.00x10^{-4}$ mol neut. $= 4.00x10^{-4}$ mole NH₃ remaining $5.00x10^{-4}mol\ HCl\ x\ \frac{1\ mol\ NH_4^+}{1\ mol\ HCl} = 5.00x10^{-4}mol\ NH_4^+\ produced$ New volume: 0.0300L + 0.0200L = 0.0500L 4.00×10^{-4} mol NH₃ / 0.0500L = 8.00×10^{-3} M NH₃ $5.00 \times 10^{-4} \text{ mol NH}_4^+ / 0.0500 \text{L} = 1.00 \times 10^{-2} \text{M NH}_4^+$

 $4.00 \times 10^{-4} \text{mol NH}_3 / 0.0500L = 8.00 \times 10^{-3} \text{M NH}_3$ $5.00 \times 10^{-4} \text{ mol NH}_4^+ / 0.0500L = 1.00 \times 10^{-2} \text{M NH}_4^+$ New equilibrium with NH₃ & NH₄⁺ present:

 NH_3 (aq) + H_2O (l) \Longrightarrow $NH_4^+(aq)$ + $OH^-(aq)$

I 0.00	08M	0.01M	0
C –x		+x	+x
E 0.008	3-×	0.01 +x	X

 $K_b = \frac{(0.01)(x)}{0.008} = 1.8 \times 10^{-5}$ $0.01 \times = 1.44 \times 10^{-7}$ $x = 1.44 \times 10^{-7} / 0.01 = 1.44 \times 10^{-5} = [OH^{-}]$ $pOH = -\log(1.44 \times 10^{-5}) = 4.84164$ $pH = 14 - 4.84164 = 9.1594 \rightarrow 9.16$

Could also use the NH₃ & NH₄⁺ molarities listed above in the H–H eq – but for H–H would need to use pKa and make sure to have [A⁻] and [HA] in the correct locations

Weak Base/Strong Acid Calculations

- 30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCl. Determine the pH:
- c.) At the equivalence point A: 5.56
- At the equivalence point, moles added acid = initial moles base
- All added acid & initial base are neutralized (i.e. all NH_3 became NH_4^+)
- pH depends on equilibrium of CONJUGATE acid

Conjugate acid of NH₃ is NH₄⁺.

Moles NH₄⁺ = moles NH₃ neutralized: $0.0300 \frac{mol}{L} \times 0.0300L = 9.00 \times 10^{-4} mol$

- Volume acid needed for neutralization = volume containing 9.00×10^{-4} mol HCl: 9.00×10^{-4} mol HCl x $\frac{1L HCl}{0.0250 mol HCl}$ = 0.036L HCl solution Total volume = 0.0360L added + 0.0300L initial = 0.0660LConcentration of NH₄⁺ = 9.00×10^{-4} mol/0.0660L = 0.013636M
- Equilibrium is:
- $NH_4+(aq) + H_2O(I) \iff NH_3(aq) + H_3O^+(aq)$

 $\begin{array}{cccc} NH_{4}+(aq) + H_{2}O(I) & \longrightarrow & NH_{3}(aq) + H_{3}O^{+}(aq) \\ I & 0.013536 & 0 & 0 \\ C & -x & +x & +x \\ E & 0.013636 - x & x & x \end{array}$

$$K_a = \frac{K_w}{K_b} = \frac{1.00 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}$$

$$K_a = \frac{x^2}{0.013636} = 5.56x10^{-10}$$
$$x^2 = 7.576x10^{-12}$$
$$x = 2.752x10^{-6} = [H_3O^+]$$
$$pH = -\log (2.752x10^{-6}) = 5.5603 \rightarrow 5.56$$

Weak Base/Strong Acid Calculations

30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCl. Determine the pH:

d.) When 37.0mL of 0.025M HCl has been added A: 3.43

- Excess HCI has been added. HCI is strong. pH depends on amount of HCI left over after neutralization.
- Strong acid = no equilibrium

Reaction: $NH_3(aq) + HCI(aq) \rightarrow NH_4^+(aq) + CI^-(aq)$

Moles HCl added: $\frac{0.0250 \text{ mol HCl}}{1 L} \times 0.0370L = 9.25 \times 10^{-4} \text{ mol HCl}$

Moles HCI needed for neutralization:

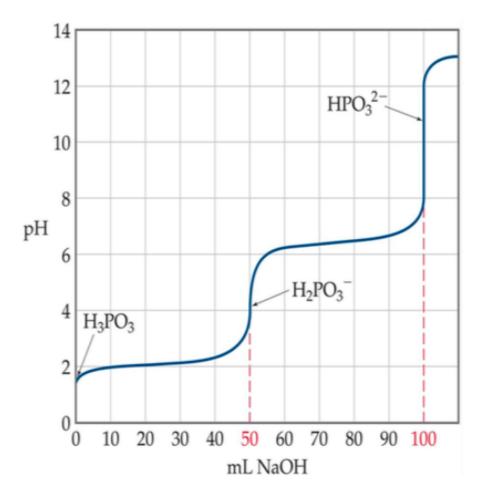
$$9.00x10^{-4}mol \, NH_3x \frac{1mol \, HCl}{1mol \, NH_3} = 9.00x10^{-4}mol \, HCl$$

Moles HCl not used in neutralization:

 9.25×10^{-4} mol added - 9.00×10^{-4} mol used = 2.5×10^{-5} mol HCl left over Total volume = 0.0300L + 0.0370L = 0.0670LConcentration of HCl = 2.5×10^{-5} mol/ $0.0670L = 3.73 \times 10^{-4}$ M Strong acid so $[H_3O^+] = 3.73 \times 10^{-4}$ M pH = $-\log(3.73 \times 10^{-4}) = 3.43$

Acid-Base Indicators

Chemical added during a titration to cause a color change at a particular pH allowing the user to detect the endpoint.


Things to consider when choosing an indicator: Example: titration of CH₃COOH with NaOH

- What kind of titration is it? Weak acid with strong base
- What kind of salt is formed? Basic salt
- What happens to pH due to hydrolysis? Salt is basic so pH > 7.0

	Color		
Indicator	In Acid	In Base	pH Range*
Thymol blue	Red	Yellow	1.2-2.8
Bromophenol blue	Yellow	Bluish purple	3.0-4.6
Methyl orange	Orange	Yellow	3.1-4.4
Methyl red	Red	Yellow	4.2-6.3
Chlorophenol blue	Yellow	Red	4.8-6.4
Bromothymol blue	Yellow	Blue	6.0–7.6
Cresol red	Yellow	Red	7.2-8.8
Phenolphthalein	Colorless	Reddish pink	8.3-10.0

*The pH range is defined as the range over which the indicator changes from the acid color to the base color.

Titrations of Polyprotic Acids

The titration of a polyprotic acid with a base will give an equivalence point for each acidic proton.

Solubility Equilibria

Aqueous Salt Solutions & Solubility

CHM 101

- Ionic compounds were considered soluble or insoluble
- Soluble compounds dissociated fully in water
- Basic stoichiometry rules were used

CHM 112

- Most ionic compounds are "slightly" soluble they do dissolve a little, but not very much
- A small amount of dissolved & dissociated material is present with the bulk undissolved
- Ions are constantly moving between the dissolved and undissolved states – EQUILIBRIUM!
- Solubility constant is K_{sp} (solubility product constant)
- Discussed in terms of Molar Solubility –
 moles solute/ 1L saturated solution

CHM 101 Solubility Rules for ions

Soluble	Ammonium (NH ₄ ⁺) Hydrogen (H ⁺) Alkali metals (grou Nitrate (NO ₃ ⁻) Perchlorate (ClO ₄ ⁻) Acetate (CH ₃ COO ⁻)	ap 1 A) Always soluble	
Usually Soluble	Halides (F ⁻ ,Cl ⁻ ,Br ⁻ ,& I ⁻ Sulfate (SO ₄ ²⁻)	Exceptions (inso Pb ²⁺ , Hg ₂ ²⁺ , Ag ⁺ Pb ²⁺ , Hg ₂ ²⁺ , Ag ⁺ ,	
Sparingly Soluble (Insoluble)	Sulfide (S ²⁻) Hydroxide (OH ⁻) Oxide (O ²⁻) Carbonate (CO ₃ ²⁻) Phosphate (PO ₄ ³⁻)	Exceptions: soluble if with a the cations liste always soluble b	d in the

Solubility Product Constant (K_{sp})

A slightly soluble ionic material is placed in water.

- The solubility is low so most will not dissolve
- What does dissolve will dissociate into ions

 $PbCl_2$ (s) $\implies Pb^{2+}(aq) + 2Cl^{-}(aq)$

- The solid is in equilibrium with the dissolved ions
- The equilibrium expression is:

 $K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$

 Note that the PbCl₂(s) is not included in the equilibrium expression. Why?

Solubility Product Constant (K_{sp})

- K_{sp} is an approximation used to estimate solubility
- Measures the extent to which a substance will dissolve in water
- Larger K_{sp} = higher solubility

Lead(II) chloride (PbCl₂)

- Amount of solid material present does not alter K_{sp}
 - Solids are not included in equilibrium expressions!

Compound	K _{sp}	Compound	K _{sp}
Aluminum hydroxide [Al(OH) ₃]	1.8×10^{-33}	Lead(II) chromate (PbCrO ₄)	2.0×10^{-14}
Barium carbonate (BaCO ₃)	8.1×10^{-9}	Lead(II) fluoride (PbF ₂)	4.1×10^{-8}
Barium fluoride (BaF ₂)	1.7×10^{-6}	Lead(II) iodide (PbI ₂)	1.4×10^{-8}
Barium sulfate (BaSO ₄)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide (Bi ₂ S ₃)	1.6×10^{-72}	Magnesium carbonate (MgCO ₃)	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [Mg(OH) ₂]	1.2×10^{-1}
Calcium carbonate (CaCO ₃)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF ₂)	4.0×10^{-11}	Mercury(I) chloride (Hg ₂ Cl ₂)	3.5×10^{-18}
Calcium hydroxide [Ca(OH) ₂]	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate [Ca ₃ (PO ₄) ₂]	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide [Cr(OH)3]	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate (Ag ₂ CO ₃)	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-12}
Copper(II) hydroxide [Cu(OH) ₂]	2.2×10^{-20}	Silver sulfate (Ag ₂ SO ₄)	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide (Ag ₂ S)	6.0×10^{-51}
Iron(II) hydroxide [Fe(OH)2]	1.6×10^{-14}	Strontium carbonate (SrCO ₃)	1.6×10^{-9}
Iron(III) hydroxide [Fe(OH) ₃]	1.1×10^{-36}	Strontium sulfate (SrSO ₄)	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO ₃)	3.3×10^{-14}	Zinc hydroxide [Zn(OH) ₂]	1.8×10^{-14}
and the second			

Zinc sulfide (ZnS)

 3.0×10^{-23}

 2.4×10^{-1}

Calculating K_{sp} **from Solubility**

The molar solubility of CaF₂ at 35°C is 1.24×10^{-3} M. (a) What is the solubility of CaF₂ in g/L? A: 0.0968g/L

(b) What is K_{sp} at this temperature? A: 7.63x10⁻⁹

Calculating Solubility from K_{sp}

The K_{sp} for LaF₃ is 2.0x10⁻¹⁹.

(a) What is the molar solubility of LaF_3 in water? A: 9.3x10⁻⁶M

(b) What is the solubility in g/L? A: 1.8x10⁻³g/L

Comparing Molar Solubilities vs. K_{sp}

Compound BaSO₄ Mg₃(AsO₄)₂ K_{sp} 1.1x10⁻²⁰ 2.0x10⁻²⁰ Molar Solubility 1.0x10⁻⁵M 5.0x10⁻⁵M

Molar Solubility Comparison: Mg₃(AsO₄)₂ molar solubility is 5X greater than $BaSO_4$

K_{sp} **Comparison** BaSO₄ has a K_{sp} that is 10^9 X greater than Mg₃(AsO₄)₂

Be careful using K_{sp} directly to compare solubilities

- Number of ions present also matters
- Can only directly compare K_{sp} if # ions produced is identical

Factors Affecting Solubility:

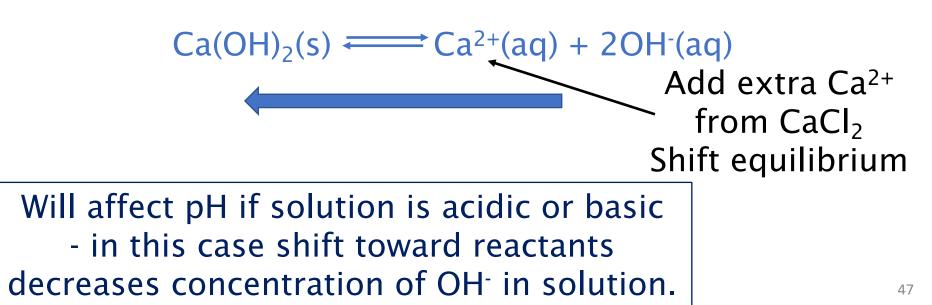
Common-Ion Effect

 One of the ions in the compound is also part of another compound present in the solution

рΗ

Presence of hydroxide (OH⁻) or hydronium ions (H₃O⁺)

Complexation


 Formation of coordinate bonds with solvent or other molecules present in solution

Common-Ion Effect

The extent of ionization of a weak electrolyte is <u>decreased</u> by the addition of a strong electrolyte that has an <u>ion in common</u> with the weak electrolyte.

Equilibrium process – presence of ions shifts process back to reactants.

Ex: A solution is made with 1.0M CaCl₂ and 2.0M Ca(OH)₂

Common-Ion Calculations

1. Calculate the pH of a solution containing 0.085M nitrous acid (HNO₂; $K_a = 4.5 \times 10^{-4}$) and 0.10M potassium nitrite (KNO₂).

2. The K_{sp} of Mn(OH)₂ is 1.6x10⁻¹³. Calculate the molar solubility of Mn(OH)₂ in:

- a.) water A: 3.4x10⁻⁵M
- b.) A solution that contains 0.020M NaOH A: 4.0x10⁻¹⁰M
- c.) Compare the solubility of $Mn(OH)_2$ in these solutions

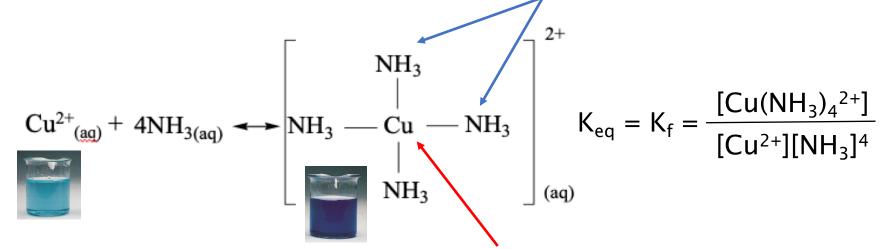
A: 85,000 times more soluble in water

3.) How much is the solubility of lead (II) chloride changed in the presence of 0.85M NaCl? $K_{sp} = 1.6 \times 10^{-5}$

More than 700X less soluble than in water ⁵⁰

Effect of pH

If the Compound Contains a(n):


- Basic Anion: More soluble in acidic solution Mg(OH)₂(s) Mg²⁺(aq) + 2OH⁻(aq)
 In acidic solution: OH⁻(aq) + H₃O⁺(aq) 2H₂O(I)
 OH⁻ removed from solution, dissolution equilibrium shifts toward more dissolved product
- Acidic Cation: More soluble in basic solution
 C₇H₇OCOOH(s) ↔ C₇H₇OCOO⁻(aq) + H₃O⁺(aq)
 In basic solution: OH⁻(aq) + H₃O⁺(aq) ↔ 2H₂O(l)
 H₃O⁺ removed from solution, dissolution equilibrium
 shifts toward more dissolved product

Effect of pH Calculations

Calculate the solubility of Mg(OH)₂ (one of the ingredients in the antacid Maalox) in grams per liter when buffered at pH: (a) 12.50; (b) 7.00 A: a.) 7.01×10^{-7} g/L; b.) 7.00×10^{4} g/L K_{sp} of Mg(OH)₂ = 1.2 x 10^{-11} ; MM Mg(OH)₂ = 58.32 g/mol

Complex Ion Formation

Complex Ion: A central metal ion surrounded by other groups (molecules or ions) called **ligands**.

The metal center (Cu) is a Lewis Acid that accepts electron pairs from the ligands (NH₃), which act as Lewis Bases by donating electron pairs.

Formation of a complex ion is a reversible equilibrium reaction with its own equilibrium constant, K_f . $K_f = formation \ constant$

Common Complex Ion Ligands: NH₃, CN⁻, OH⁻, Br⁻, I⁻

K_f Values for Selected Complex Ions

TABLE 17.4	Formation Constants of Selected Complex lons in Water at 25°C		
Complex Ion	Equilibrium Expression	Formation Constant (K _f)	
$Ag(NH_3)_2^+$	$Ag^+ + 2NH_3 \implies Ag(NH_3)_2^+$	1.5×10^{7}	
$Ag(CN)_2^-$	$Ag^+ + 2CN^- \Longrightarrow Ag(CN)_2^-$	$1.0 imes 10^{21}$	
$Cu(CN)_4^{2-}$	$Cu^{2+} + 4CN^{-} \Longrightarrow Cu(CN)_4^{2-}$	$1.0 imes 10^{25}$	
$Cu(NH_3)_4^{2+}$	$Cu^{2+} + 4NH_3 \Longrightarrow Cu(NH_3)_4^{2+}$	$5.0 imes 10^{13}$	
$Cd(CN)_4^{2-}$	$Cd^{2+} + 4CN^{-} \Longrightarrow Cd(CN)_4^{2-}$	7.1×10^{16}	
CdI_4^{2-}	$Cd^{2+} + 4I^- \implies CdI_4^{2-}$	$2.0 imes 10^{6}$	
$HgCl_4^{2-}$	$Hg^{2+} + 4Cl^{-} \Longrightarrow HgCl_4^{2-}$	1.7×10^{16}	
HgI_4^{2-}	$Hg^{2+} + 4I^- \implies HgI_4^{2-}$	$2.0 imes 10^{30}$	
$Hg(CN)_4^{2-}$	$Hg^{2+} + 4CN^{-} \Longrightarrow Hg(CN)_4^{2-}$	$2.5 imes 10^{41}$	
Co(NH ₃) ₆ ³⁺	$Co^{3+} + 6NH_3 \Longrightarrow Co(NH_3)_6^{3+}$	$5.0 imes 10^{31}$	
$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4NH_3 \Longrightarrow Zn(NH_3)_4^{2+}$	2.9×10^{9}	

Complex Ion Formation & Solubility

Formation of a Complex Ion can increase solubility

$$AgCI(s) \iff Ag^{+}(aq) + CI^{-}(aq) \qquad K_{sp}$$

$$Ag^{+}(aq) + 2NH_{3}(aq) \iff Ag(NH_{3})_{2}^{+}(aq) \qquad K_{f}$$

 $AgCI(s) + 2NH_3(aq) \implies Ag(NH_3)_2^+(aq) + CI^-(aq) K_c$

- Ag⁺ is removed from solution, shifting solubility equilibrium to the dissociated products
- More AgCl(s) dissolves
- K_{sp} governs first process
- K_f governs second process
- Two processes are added together
- K_c (overall equilibrium expression) = $K_{sp} \times K_f$

Complex Ion Formation & Solubility

1. Determine the equilibrium constant for the reaction: $Agl(s) + 2CN^{-}(aq) \iff Ag(CN)_{2}^{-}(aq) + I^{-}(aq)$ $K_{sp} Agl = 8.3 \times 10^{-17}; K_{f} Ag(CN)_{2}^{-} = 1 \times 10^{21}$

Complex Ion Formation & Solubility

2. Calculate the molar solubility of zinc carbonate at 25°C in (a) pure water and (b) 1.0M NH₃ $K_{sp} = 1.4 \times 10^{-11}$; $K_f = 4.1 \times 10^8$ for $Zn(NH_3)_4^{2+}$ (b) 7.6×10^{-2} M

Whether or not a precipitate will form depends on concentration.

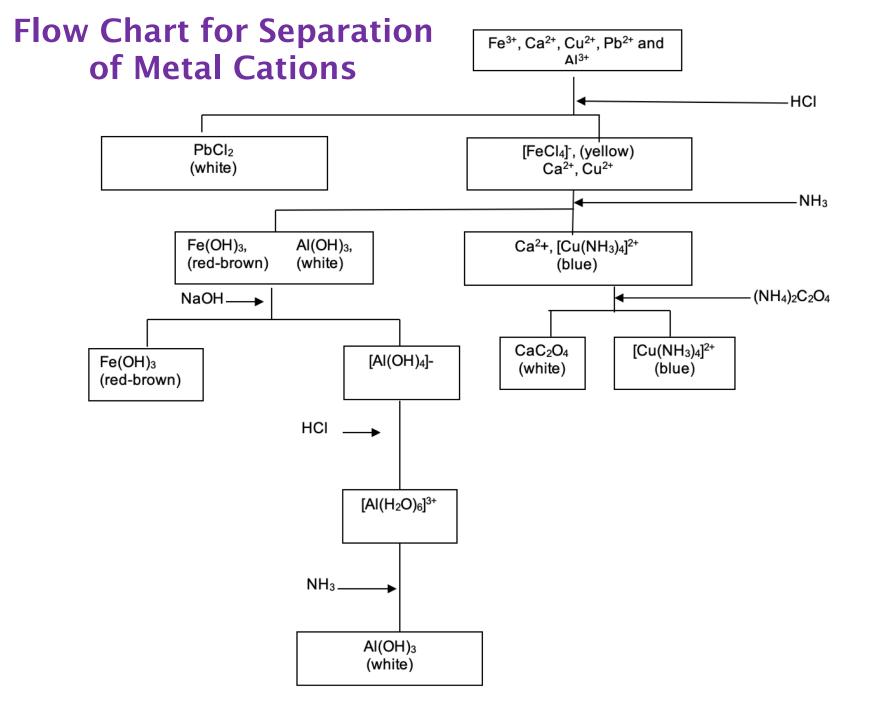
Can use Q_c values to predict precipitate formation

Calculate Q_c based on given concentrations & compare Q_c to K_{sp}

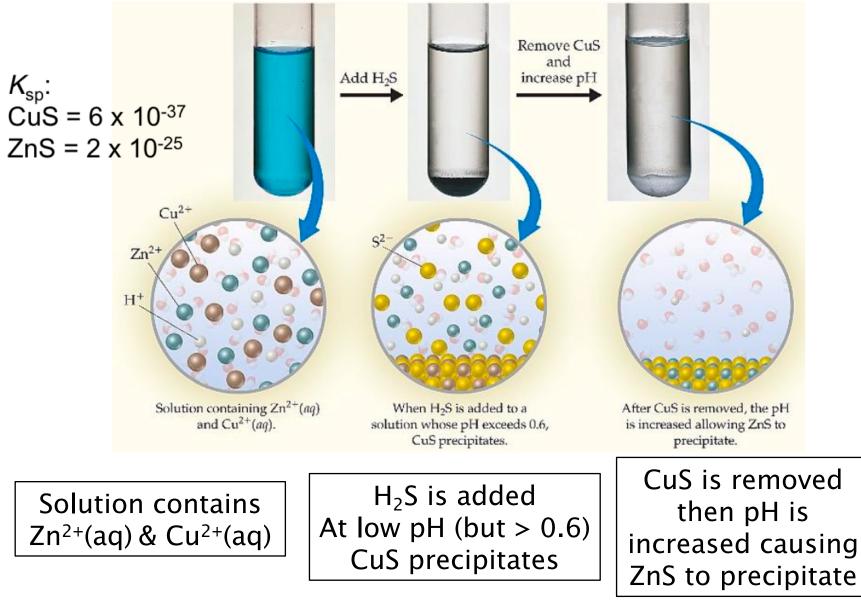
- $Q_c > K_{sp}$ Concentration too high \rightarrow Precipitate will form
- $Q_c < K_{sp}$ Concentration low \rightarrow all ions remain in solution
- $Q_c = K_{sp}$ At Equilibrium \rightarrow saturated solution

1.) If 2.00mL of 0.200M NaOH are added to 1.00L of 0.100M CaCl₂, will a precipitate form? A: no precipitate will form

2.) How many grams of solid K_2SO_4 (174.3g/mol) would need to be added to 50.0mL of a 0.0010M Ca(NO₃)₂ solution in order to (a) start precipitation and (b) precipitate 99% of the calcium?


2.) How many grams of solid K_2SO_4 (174.3g/mol) would need to be added to 50.0mL of a 0.0010M Ca(NO₃)₂ solution in order to (a) start precipitation and (b) precipitate 99% of the calcium?

Qualitative Analysis of Metal Ions


Ways to determine which ions are present in solution

- Selective precipitation
 - One compound has very low K_{sp} and will form a precipitate
 - Other compounds have very high (or no) K_{sp}
- Complex formation
 - Ligands will only form complex with one ion present
 - May cause a precipitate to dissolve
- Flame tests
 - Color of flame can be used for ID
 - CHM 101 energy levels!

Selective Precipitation

Selective Precipitation

A solution contains 0.050M Mg²⁺ and 0.020M Cu²⁺. Solid NaOH is added to the solution. K_{sp} Mg(OH)₂ = 1.8x10⁻¹¹; K_{sp} Cu(OH)₂ = 4.8x10⁻²⁰

(a) Which ion will precipitate first? A: Cu²⁺

(b) What concentration of OH⁻ is necessary to begin precipitation of each cation. A: Cu²⁺ needs 1.5x10⁻⁹M Mg²⁺ needs 1.9x10⁻⁵M

Selective Precipitation

A solution contains 0.050M Mg²⁺ and 0.020M Cu²⁺. Solid NaOH is added to the solution. $K_{sp} Mg(OH)_2 = 1.8 \times 10^{-11}$; $K_{sp} Cu(OH)_2 = 4.8 \times 10^{-20}$ A: Cu²⁺ needs 1.5×10⁻⁹M Mg²⁺ needs 1.9×10⁻⁵M

(a) What concentration of OH⁻ is necessary to begin precipitation of each cation.

 $Cu(OH)_2(s) \implies Cu^{2+}(aq) + 2OH^{-}(aq)$ 0.020 X or 2X? $K_{sp} = [0.020][X]^2 = 4.8 \times 10^{-20}$ $K_{sp} = [0.020][2X]^2 = 4.8 \times 10^{-20}$ $K_{sp} = 0.080X^2 = 4.8 \times 10^{-20}$ $X^2 = 2.4 \times 10^{-18}$ $X = [OH] = 1.5 \times 10^{-9} M$ $X^2 = 6.0 \times 10^{-19}$ $X = 7.75 \times 10^{-10} M$ $[OH] = 2X = 2(7.75 \times 10^{-10} M)$ $[OH] = 1.5 \times 10^{-9} M$