Chapter 15

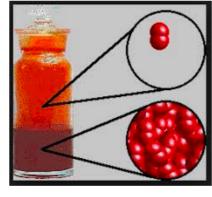
Chemical Equilibrium

$$CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$$

Equilibrium: A Dynamic Process

Opposing processes occur at equal rates

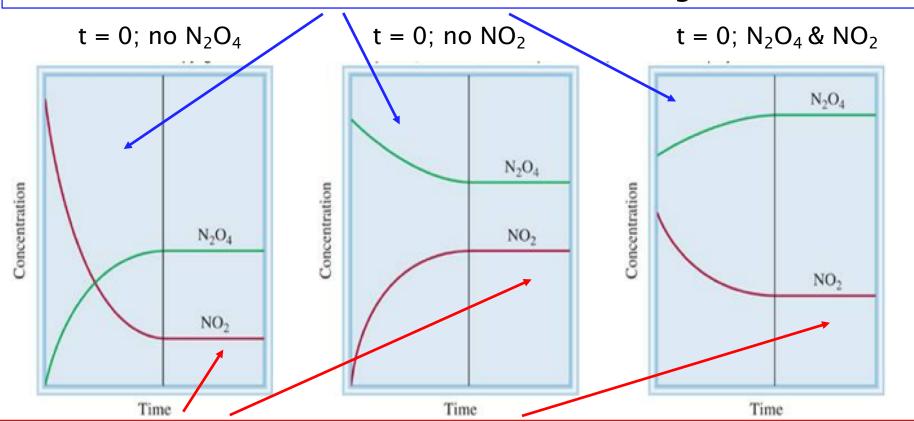
- Forward & reverse reactions occur at equal rates
- No outward change is observed
- Ratio of reactants to products is constant
- Temperature dependent
- Other factors can also shift equilibrium toward products or reactants


Physical Equilibrium

Ex: Equilibrium between phases $Br_2(I) \Longrightarrow Br_2(g)$

Equilibrium between reactants & products

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ Colorless Brown



Initial conditions may vary – concentrations will adjust to establish equilibrium

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

As a system approaches equilibrium, both the forward and reverse reactions are occurring

At equilibrium, the forward and reverse reactions are proceeding at the same rate, so the relative concentrations remain constant.

Equilibrium Constant (K_c)

$$N_2O_4(g) \implies 2NO_2(g)$$

At equilibrium, [N₂O₄] & [NO₂] are constant

- NOT EQUAL
- Not static both forward & reverse reactions continue
- Actual amounts depend on system

TABLE 15.1 The NO₂-N₂O₄ System at 25° C

Rate (forward) = Rate (reverse):
$$k_1[N_2O_4] = k_{-1}[NO_2]^2$$

$$\frac{k_1}{k_{-1}} = \frac{[NO_2]^2}{[N_2O_4]} = K_c$$

[cor	nc]
not	equal

1110 1102 11204 0 y storii de 20 0						
Initial Concentrations (M)		Equilibrium Concentrations (M)		Ratio of Concentrations at Equilibrium		
[NO ₂]	[N ₂ O ₄]	[NO ₂]	[N ₂ O ₄]	$\frac{[NO_2]}{[N_2O_4]}$	$\frac{\left[NO_2\right]^2}{\left[N_2O_4\right]}$	
0.000	0.670	0.0547	0.643	0.0851	4.65×10^{-3}	
0.0500	0.446	0.0457	0.448	0.102	4.66×10^{-3}	
0.0300	0.500	0.0475	0.491	0.0967	4.60×10^{-3}	
0.0400	0.600	0.0523	0.594	0.0880	4.60×10^{-3}	
0.200	0.000	0.0204	0.0898	0.227	4.63×10^{-3}	

Ratio is equal

Equilibrium Expression

For the reaction: $aA + bB + \dots \Rightarrow cC + dD + \dots$

The Equilibrium Expression is:
$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

For an Equilibrium Expression:

- Concentrations of products are in numerator
- Concentrations of reactants are in denominator
- · They are the concentrations at equilibrium
- Exponents ARE coefficients from balanced equation
- Units generally not included
- Also known as a Mass Action Expression

Note difference from rate equation – equilibrium expression IS BASED ON BALANCED EQUATION

Impact of How an Equation is Balanced

Reaction A

Reaction B

$$SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g)$$
 $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$

$$K_c = \frac{[SO_3]}{[SO_2][O_2]^{1/2}}$$
 $K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$

Equilibrium constants change if the reaction is balanced differently

Numerical values for K_c are related, but different K_c (reaction B) = $[K_c$ (reaction A)]²

It is essential to know how the reaction was balanced

Manipulating Chemical Equations & K_c

When reversing a chemical equation, invert K_c

$$cC + dD \Longrightarrow aA + bB$$
 $K_c = \frac{[A]^a [B]^b}{[C]^c [D]^d} = \frac{1}{K_c}$

When multiplying coefficients by n, raise K_c to nth power

$$n(cC + dD \Longrightarrow aA + bB)$$
 $K_c = \frac{[A]^{na}[B]^{nb}}{[C]^{nc}[D]^{nd}} = K_c^n$

When adding equations, multiply the K_c values

$$eE \Longrightarrow fF$$

$$aA + bB \Longrightarrow cC + dD$$

$$EE + aA + bB \Longrightarrow + fF + cC + dD$$

$$AC = \frac{[C]^{c}[D]^{d}[F]^{f}}{[A]^{a}[B]^{b}[E]^{e}} = K_{1} \times K_{2}$$

K_p The Pressure Version of K_c

Remember the Gas Laws - Chapter 5!

- - The equilibrium expression can also be written in terms of pressure
 - Very useful since gas phase reactions are often monitored via pressure

$$K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b}$$

Writing Equilibrium Expressions

Write the equilibrium constant expression K_p and K_c for: (a) 3 NO(g) \Longrightarrow N₂O(g) + NO₂(g)

(b)
$$CH_4(g) + 2 H_2S(g) \iff CS_2(g) + 4 H_2(g)$$

Manipulating K values

1. For the formation of NH₃ from N₂ and H₂

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

 $K_p = 4.34 \times 10^{-3}$ at 300°C. What is the value of K_p for the reverse reaction?

2. How does the magnitude of the equilibrium constant K_p for the reaction

$$2 \text{ HI}(g) \iff H_2(g) + I_2(g)$$

change if the equilibrium is written as

$$6 \text{ HI}(g) \Longrightarrow 3 \text{ H}_2(g) + 3 \text{ I}_2(g)$$

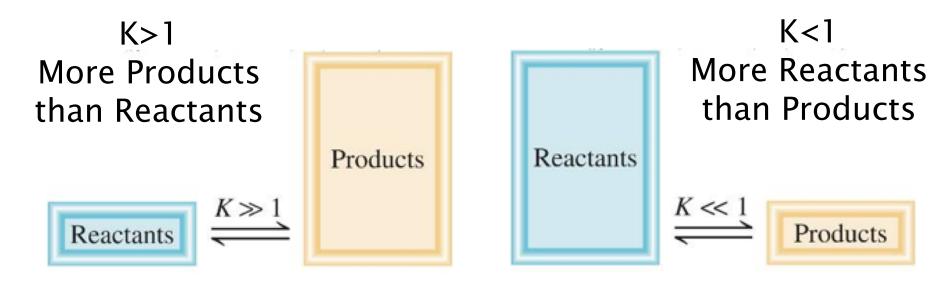
3. Given that, at 700 K, $K_p = 54.0$ for the reaction:

$$H_2(g) + I_2(g) \implies 2 HI(g)$$

and $K_p = 1.04 \times 10^{-4}$ for the reaction:

$$N_2(g) + 3 H_2(g) \implies 2 NH_3(g)$$

determine the value of K_p for the following reaction at 700K:


$$2 \text{ NH}_3(g) + 3 \text{ I}_2(g) \implies 6 \text{ HI}(g) + \text{N}_2(g)$$

What Equilibrium Constants Can Tell Us

$$aA + bB \iff cC + dD$$

At Equilibrium:

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

As K goes to infinity, reaction goes to completion.

As K goes to zero, no reaction occurs.

Analyzing K_p/K_c Values

For the reaction: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

 $K_p = 794$ at 298K and $K_p = 54$ at 700K

Is the formation of HI more favored at the higher or lower temperature?

Using the Equilibrium Expression

- 1. Nitrogen monoxide exists in equilibrium with nitrogen and oxygen gas. At a given temperature, 0.100 moles of NO were added to a 2.00L vessel. At equilibrium, 0.044 moles of NO were remaining. What is the value of K_c ?
- 1. Write the balanced equation & equilibrium constant expression.

2. Find equilibrium <u>molarities</u> of reactants and products. We are using concentration, so make sure to convert to Molarity!

3. Calculate K_c

Types of Equilibria: Homogeneous (K_c & K_p) All products & reactants are in the same phase

K_c: All chemicals are in units of molarity (mol/L)
Can be either gas or aqueous solutions

K_p: All chemicals in **gas** phase Pressure is the partial pressure – units often atmospheres $2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g)$

 $K_c \& K_p$ are related: $K_p = K_c \cdot (RT)^{\Delta n}$

- Derived from ideal gas law
- R = gas constant $(0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K})$
- T = temperature in Kelvin
- $\Delta n = moles$ gaseous products moles gaseous reactants

 $K_p = K_c$ if moles product gas = moles reactant gas If moles product gas \neq moles reactant gas, there will be a change in pressure

Calculating K_p from K_c

Calculate K_p for the following reactions at 1500°C.

A: 87.9 A: 12800 ₁₆

Types of Equilibria: Heterogeneous

Are the equilibrium constants for the following two reactions the same?

$$SO_3(g) + H_2O(g) \rightleftharpoons H_2SO_4(g)$$
 & $SO_3(g) + H_2O(I) \rightleftharpoons H_2SO_4(aq)$

"K₁" =
$$\frac{[H_2SO_4(g)]}{[SO_3(g)][H_2O(g)]}$$

"
$$K_2$$
" = $\frac{[H_2SO_4(aq)]}{[SO_3(g)][H_2O(l)]}$

" K_1 " would equal " K_2 " ONLY IF $[H_2SO_4(g)] = [H_2SO_4(aq)]$ AND $[H_2O(g)] = [H_2O(I)]$

 $[H_2SO_4(g)]$ dependent on partial pressure variable

 $[H_2SO_4(aq)]$ # moles dissolved in water variable

[H₂O(g)] dependent on partial pressure variable

 $[H_2O(I)]$ 1 g/mL = 1000 g/L 56M

for 1L: 1000g(1mol/18g) = 56 mol

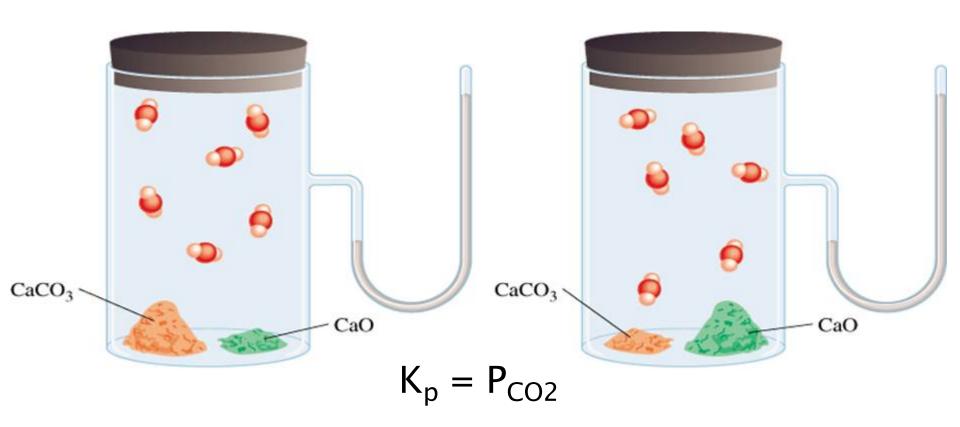
The two equilibrium constants are NOT the same!

THE PHASE MATTERS!

Equilibria Involving Mixed Phases (i.e. Heterogeneous)

The subscript "eq" is for general equilibria $K_c \& K_p$ are specific types of K_{eq}

Equilibrium expressions only include gaseous & aqueous materials (solids & liquid are NOT included)


$$SO_3(g) + H_2O(I) \Longrightarrow H_2SO_4(aq)$$
 $K_{eq} = \frac{[H_2SO_4(aq)]}{[SO_3(g)]}$

 K_p for liquid-vapor equilibrium = $\underbrace{vapor}_{pressure}$ pressure of liquid $H_2O(I) \Longrightarrow H_2O(g)$ $K_p = P_{(H2O)}$ liquid not included

To write an appropriate equilibrium expression from a balanced equation, the equation MUST show the phase of each reactant & product.

Equilibria Involving Pure Solids & Liquids

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

P_{CO2} does not depend on the amount of CaCO₃ or CaO

As long as there is <u>some</u> CaCO₃ & CaO in the system, the amount of CO₂ above the solid will remain the same

Equilibria Involving Solids & Liquids

A mixture of H_2 , S, and H_2 S is held in a 1.0L vessel at 90°C and reacts according to the equation:

$$H_2(g) + S(s) \Longrightarrow H_2S(g)$$

An equilibrium mixture contains 0.46g H₂S & 0.40g H₂.

- (a) Write the equilibrium constant expression for this reaction.
- (b) What is the value of K_c for the reaction at this temp.?

A: 0.068

(c) Why can we ignore the amount of S when doing the calculation in part b?

Predicting the Direction of a Reaction

$$aA + bB + \dots \implies cC + dD + \dots \qquad K_{eq} = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

If the value of K_{eq} is very large

- [C] & [D] very large or [A] & [B] very small
- Reaction will go to completion
- Equilibrium favors products

If the value of K_{eq} is very small

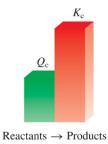
- [C] & [D] very small or [A] & [B] very large
- · Reaction proceeds very slowly or no reaction (NR) at all
- Equilibrium favors reactants

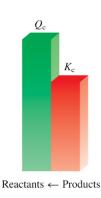
Note that K_{eq} has its origins in thermodynamics, but kinetics are also important. The value of K_{eq} does not guarantee that a reaction will occur in either direction.

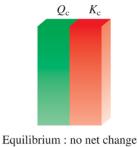
The Reaction Quotient (Q_c or Q_p)

$$aA + bB + \dots \Rightarrow cC + dD + \dots \qquad Q_c = \frac{[C]^c [D]^a}{[A]^a [R]^b}$$

Essentially K_{eq} but at non-equilibrium conditions


Indicates direction of reaction to get to equilibrium


- [Products] < equilibrium concentration
- Higher rate in forward direction


- [Products] > equilibrium concentration
- Higher rate in reverse direction

$$Q = K$$

- [Products] = equilibrium concentration
- Forward rate = Reverse rate
- No macroscopic changes observed

Reaction Quotient

1. For the reaction of hydrogen with nitrogen to form ammonia at 25°C, $K_c = 4.0 \times 10^8$. The equilibrium concentrations were found to be 1.0x10⁻³M in both hydrogen & nitrogen and 0.020M in ammonia. If you add 0.010M nitrogen, in which direction does the reaction shift?

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

2. At 1000K, the value of K_p for the following reaction is 0.338.

$$2 SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

Given the following pressures:

$$P_{SO3} = 0.16$$
 atm; $P_{SO2} = 0.41$ atm; $P_{02} = 2.5$ atm

(a) Is the system at equilibrium? A: No

(b) If not, predict the direction in which the reaction will shift to reach equilibrium. A: toward reactants

Using K_{eq} to Find Equilibrium Concentrations

- 1. Write the properly balanced chemical equation.
 - Need the stoichiometry & species involved in the reaction.
- 2. Set up a table of concentrations for all components.
 - Use coefficients from balanced equation to express all unknown concentrations in terms of a single reactant or product, x.
- 3. Write out the equilibrium constant expression for the reaction (i.e. the equation for K).
- 4. Substitute the values from step 2 into the K_{eq} equation.
- 5. Solve the equation for x.
- 6. Substitute the value you calculated for x into the expressions for the other equilibrium concentrations.

"Ice Tables" will be used in most of the remaining chapters!

Using K_{eq} to Find Equilibrium Concentrations

- 1. The decomposition of BrCl to bromine & chlorine has a K_c of 0.14 at 350K. If the initial concentration of BrCl is 0.062M, what are the equilibrium concentrations of all components?
- 1. Balanced Equation:
- 2. ICE Table

3. K_{eq} Expression

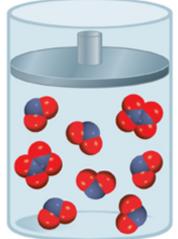
6. Use x to determine conc.

4 & 5. Substitute values from table & Solve for x

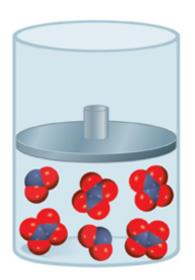
- 2. Carbon monoxide reacts with water at 1000° C to give carbon dioxide and hydrogen with $K_c = 0.58$. A reaction was started with the following composition: CO_2 0.20M; H_2 1.20M; H_2O 0.50M; CO 1.00M. What are the equilibrium concentrations of all components?
- 1. Balanced Equation:
- 2. ICE Table

3. K_{ea} Expression

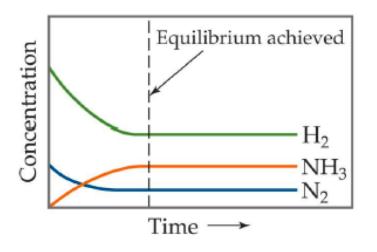
4. Substitute values from table

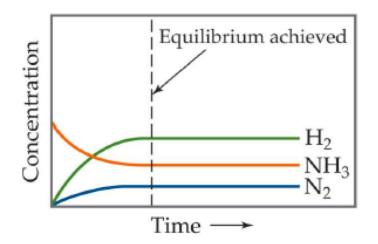

5. Solve for x using quadratic equation: $-b\pm\sqrt{b^2-4ac}$

6. Use x to determine concentrations


Factors that Affect Chemical Equilibrium: Le Châtelier's Principle

When stress is applied to a system at equilibrium, the system will shift to reduce the applied stress and re-establish equilibrium


$$2NO_2(g) \implies 1N_2O_{4(g)}$$

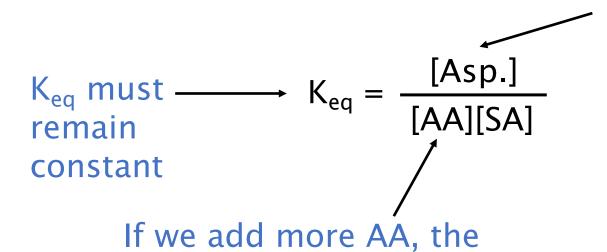


Addition of pressure causes the reaction to shift towards products – fewer moles of gas decreases the pressure (i.e. the stress)

Remember: Equilibrium Can Be Reached From Either Direction

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

It doesn't matter whether you start with N_2 and H_2 or with NH_3 – you will have the same proportions of all three substances at equilibrium

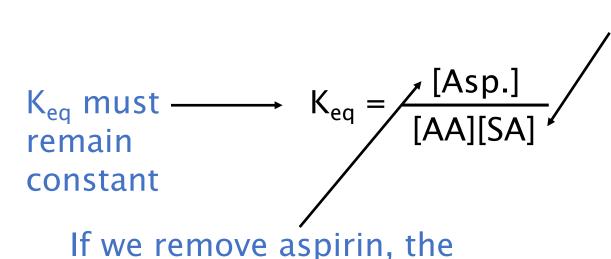

Many different types of stress can affect equilibrium, such as:

Change in components Change in concentrations Change in partial pressure Change in external pressure Change in total volume Change in temperature

$$K_{eq} = \frac{[Asp.]}{[AA][SA]}$$

Synthesis of Aspirin from Salicylic Acid & Acetic Acid is an equilibrium process. We want to make as much aspirin as possible.

Addition of a component: Add Acetic Acid

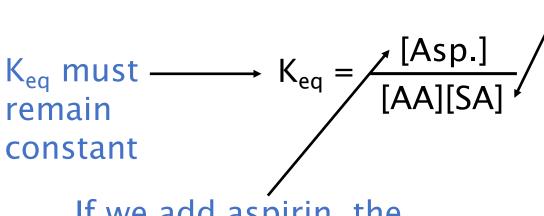

denominator gets larger

To keep K_{eq} constant, we need to increase the numerator – reaction will shift toward the products (make more aspirin).

$$\mathsf{K}_{\mathsf{eq}} = \frac{[\mathsf{Asp.}]}{[\mathsf{AA}][\mathsf{SA}]}$$

Synthesis of Aspirin from Salicylic Acid & Acetic Acid is an equilibrium process. We want to make as much aspirin as possible.

Decrease in conc. of a component: Remove Aspirin


numerator gets smaller

To keep K_{eq} constant, we need to decrease the denominator – reaction will shift toward the products (use up AA & SA, & make more aspirin).

$$K_{eq} = \frac{[Asp.]}{[AA][SA]}$$

Synthesis of Aspirin from Salicylic Acid & Acetic Acid is an equilibrium process. We want to make as much aspirin as possible.

What if we added aspirin?

If we add aspirin, the numerator gets larger

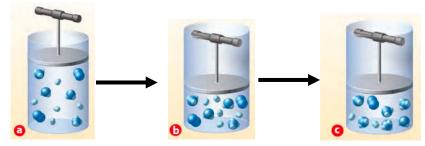
To keep K_{eq} constant, we need to increase the denominator – reaction will shift toward the reactants (make more AA & SA).

For the following reaction,

$$2NO(g) + O_2(g) \Longrightarrow 2NO_2(g)$$

what happens to the equilibrium if:

(a) O_2 is added to the system?


(b) NO is removed?

Changing Volume or External Pressure

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

When pressure is increased:

Equilibrium shifts to produce smaller # moles of gas

Toward products – 2 moles < 4 moles

When Pressure is decreased:

Equilibrium shifts to produce larger # moles of gas

Toward reactants – 4 moles > 2 moles

If a reaction has the same number of moles of gas on both sides (e.g. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$):

Changes in external pressure do not affect equilibrium

Changing Volume or External Pressure

For the following reaction,

$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$$

what happens to the equilibrium if:

(a) The volume of the system is increased?

(b) The external pressure exerted on the system is increased?

Changing Temperature

Exothermic Reaction:

Heat is released

→ heat is a product

Increase T: K decreases

→ favors reactants

Decrease T: K increases

→ favors products

Endothermic Reaction:

Heat is absorbed

→ heat is a reactant

Increase T: K increases

→ favors products

Decrease T: K decreases

→ favors reactants

2 NO₂(g) \implies N₂O₄(g) red clear Exothermic Reaction $\Delta H = -58kJ/mol$

High T: More NO₂

Low T: More N₂O₄

Adding a Catalyst or Inhibitor

Catalysts:

- Catalysts lower activation energy.
- Cause a reaction to reach equilibrium faster
- DO NOT AFFECT THE EQUILIBRIUM ITSELF

Inhibitors

- Act to slow the rate of a reaction
- Prevent equilibrium from being reached as quickly
- DO NOT AFFECT THE EQUILIBRIUM ITSELF
- It may seem like the reaction is not occurring at all, but in reality it is just infinitely slow.

Which way does the reaction shift if.....

$$N_2O_3(g) \Longrightarrow NO(g) + NO_2(g)$$
 $\Delta H = +39.7kJ/mol$

NO is added?

Volume of reaction vessel is reduced?

The total internal pressure is increased by adding He gas?

The temperature is increased?

A catalyst is added?

How does each of the following changes affect the yield of NO at equilibrium?

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$

 $\Delta H = -904.4 \text{ kJ/mol}$

Increase [NH₃]

Increase [H₂O]

Decrease [O₂]

Decrease the volume of the container

Add a catalyst

Increase temperature