
Chapter 1 Chemistry: The Science of Change

Phoenix.gov

Learning the Language

Chemistry describes materials and predicts behavior using three basic concepts

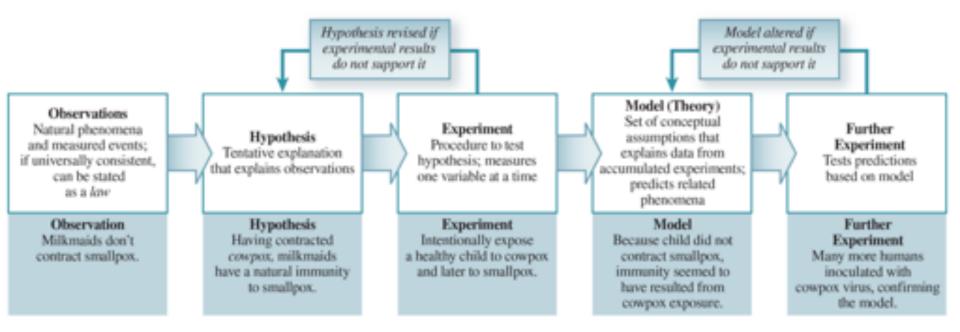
Composition: What is in a material

- •Mass percent of elements/compounds
- Atomic/molecular ratios within materialStoichiometry

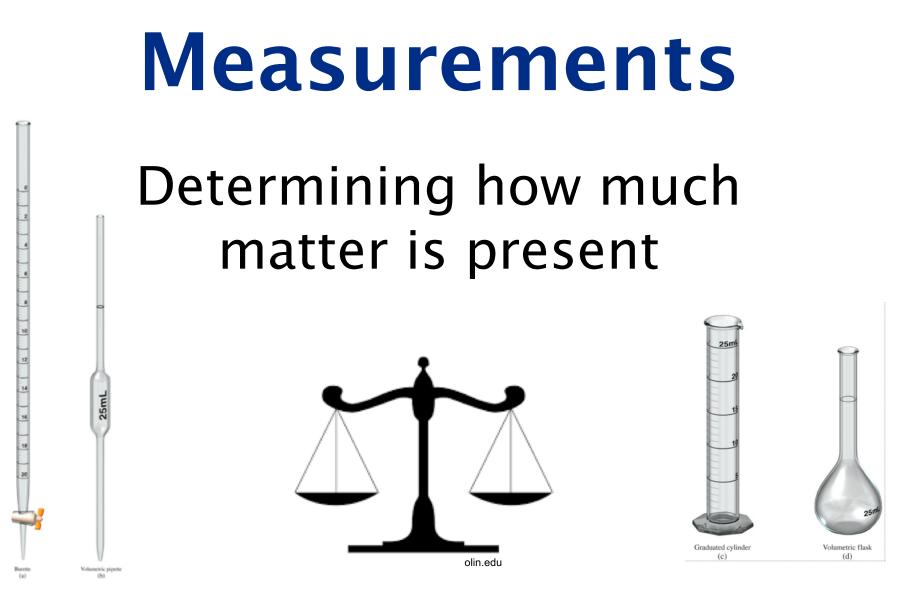
Structure

Molecular/ionic/atomic arrangementPhase (solid, liquid, gas)

Properties - chemical & physical


Specific to a particular material
ex: boiling point, color, odor, reactivity
Used for identification

Often looking at materials at the submicroscopic level too small to see with the human eye



The Scientific Method Series of steps that explain an observation

Exposure to a virus can enable humans to build an immunity to that virus – enabled the development of vaccines Most vaccines today use inactivated viruses - safer

Base Units of Measurement International System of Units (SI)

TABLE 1.1 Base SI Units			
Base Quantity	Name of Unit	Symbol	
Length	meter	m	
Mass	kilogram	kg	
Time	second	S	
Electric current	ampere	А	
Temperature	kelvin	К	$K = ^{\circ}C + 273.1$
Amount of substance	mole	mol	
Luminous intensity	candela	cd	

6

Will be used frequently in CHM 101; you are expected to know them! (Depending on other classes, will likely need to know ampere in the future.)

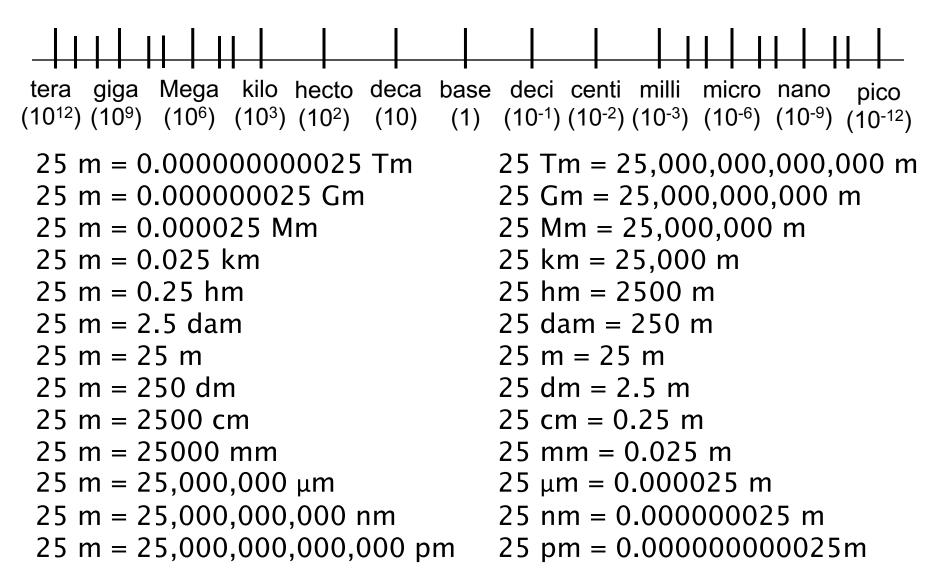

SI Prefixes Yes, you need to know these too

	TABLE 1.2		Prefixes Used with SI Units	
hecto (10 ²) deca (10 ¹) Base	Prefix	Symbo	ol Meaning	Example
	Tera-	Т	1×10^{12} (1,000,000,000,000)	1 teragram (Tg) = 1×10^{12} g
	Giga-	G	1×10^9 (1,000,000,000)	1 gigawatt (GW) = 1×10^9
	Mega-	М	1×10^{6} (1,000,000)	1 megahertz (MHz) = 1×10^6
	Kilo-	k	1×10^3 (1,000)	1 kilometer (km) = 1×10^3 m
	Deci-	d	1×10^{-1} (0.1)	1 deciliter (dL) = 1×10^{-1} L
	Centi-	с	$1 \times 10^{-2} \ (0.01)$	1 centimeter (cm) = 1×10^{-2} m
	Milli-	m	1×10^{-3} (0.001)	1 millimeter (mm) = 1×10^{-3} m
	Micro-	μ	1×10^{-6} (0.000001)	1 microliter (μ L) = 1 × 10 ⁻⁶ L
	Nano-	n	1×10^{-9} (0.000000001)	1 nanosecond (ns) = 1×10^{-9} s
	Pico-	р	1×10^{-12} (0.00000000001)	1 picogram (pg) = 1×10^{-12} g

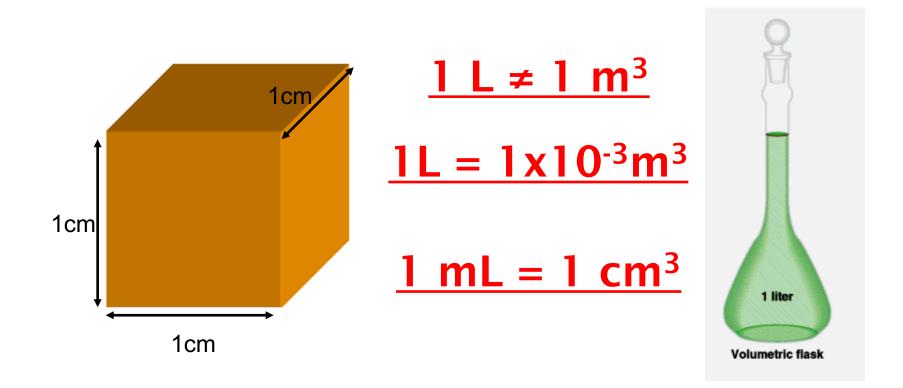
The Great Majestic King Henry Died By **Drinking Chocolate Milk at Mad Nick's Palace**

The Great Majestic King Henry Died By Drinking Chocolate Milk at Mad Nick's Palace

Metric System is Base 10 - essentially just moving the decimal point

Metric Conversion Examples

1.) Convert 256.74g to kg (0.25674 kg)


2.) How many milliliters are in 3.78 L? (3780 mL)

3.) Convert 18000000 cm into Mm (0.18 Mm)

Derived Units: Volume SI derived unit for volume is a cubic meter (m³) Common unit is a "**Liter (L)**"

10

$$1L = 1000cm^{3} = \frac{1000cm}{1}x\frac{1cm}{1}x\frac{1cm}{1}x\frac{1m}{100cm}x\frac{1m}{100cm}x\frac{1m}{100cm}x\frac{1m}{100cm} = 1x10^{-3}m^{3}$$

Metric Conversions with Units that are squared (s²), cubed (cm³), etc. can be tricky:

ex.) Convert 87856 cm³ to m³ Note: 1 m = 100 cm but $1m^3 \neq 100$ cm³ Need to do the conversion 3x for cubed numbers (2x for squared, etc.)

87856 cm³ = 0.087856 m³

Derived Units: Density Density: Ratio of mass to volume of a material

density = $\frac{\text{mass}}{\text{volume}} = \frac{m}{V}$	Substance	Density (g/cm ³)
	Air*	0.001
	Ethanol	0.79
SI derived unit for density is kg/m ³	Water	1.00
	Mercury	13.6
$1 \text{ g/cm}^3 = 1 \text{ g/mL} = 1000 \text{ kg/m}^3$	Table salt	2.2
	Iron	7.9
	Gold	19.3

Intensive property

- Can be used to identify a material
- Units of mass and volume may vary

Handling Numbers

Math Review

Significant Figures:

Number of Digits to Report in Final Answer

- 1. All non-zero digits are significant
- 2. Use decimal point to decide if zeros are significant
 Between 2 numbers significant 50.002 5 sig figs
 Before decimal point not significant 0.502 3 sig figs
 Before the first digit not significant 0.0052 2 sig figs
 End of # after decimal significant 0.0200 3 sig figs
 No decimal point: not significant 500 1 sig fig

3. Exact numbers have unlimited number of sig. figs.

Inherently an integer: Inherently a fraction: Obtained by counting: Defined quantity:

- e.g. 4 sides to a square
- e.g. $\frac{1}{2}$ of a pie
- e.g. 47 people in a class
- e.g. 12 eggs in a dozen

Determining the correct number of significant figures (sigfigs) in math problems: Answer is based on the LEAST significant value

Addition/subtraction - Sig figs based on decimal

 $\begin{array}{rcl} 1500 & 12.45 \times \times \\ + 2976 & & - 9.2680 \\ \hline 4476 \longrightarrow 4500 & 3.1820 \longrightarrow 3.18 \end{array}$

Multiplication/Division – Sig figs based on all sig digits 4 sig figs 3 < 4 so 3 sig figs $3.182 \times 3.57 = 11.35974 \longrightarrow 11.4$ 3 sig figs

> Rounding is based on number <u>after</u> last sigfig: \geq 5 round up \leq 5 round down

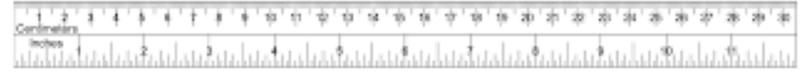
Multiple math functions – follow order of ops

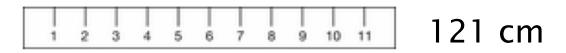
$(12.45 - 9.2680) \times 3.575 = 11.37565$

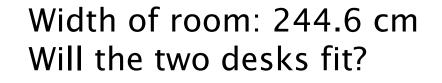
Step one: Subtraction \rightarrow Sigfigs based on decimal(12.45 - 9.2680) = 3.1822 sigfigs after decimal0.2680

3 sigfigs overall in final answer $\frac{-9.2680}{3.1820}$

Step two: Multiplication \rightarrow Sigfigs based on all sig digits


<u>3.18</u>² x 3.575 = <u>11.3</u>7565


3 sigfigs in 1st number, 4 in $2^{nd} \rightarrow 3$ in final answer Here addition limits sigfigs


Round up because the next number is >5 $11.37565 \rightarrow 11.4$

Why do significant figures matter?

123.52 cm

123.52 cm +121.?? cm 244.52 cm → 245 cm

What if this is actually 121.1?!? 244.

Fitting desks in a room may not seem all that important – but the same concept is true for the design of buildings & bridges!

Scientific Notation For very large or very small numbers Significant digits → $1.7 \times 10^6 \leftarrow$ Size of number (multiplier) $1700000 \rightarrow 1.7 \times 10^6 \leftarrow$ Positive exp = large number (>1) $0.000017 \rightarrow 1.7 \times 10^6 \leftarrow$ Negative exp = small number (<1)

Rules:

- Keep all significant numbers
- Place decimal after 1st significant number (1.7)
- To get exponent:
 - Count number of places decimal moved to get to correct location (after 1st significant number). This value is your exponent.
 - If the number is >1, exp is positive $1700000 \rightarrow 1.7 \times 10^{6}$
 - If the number is <1 exp is negative $0.0000017 \rightarrow 1.7 \times 10^{-6}$

Scientific Notation Examples

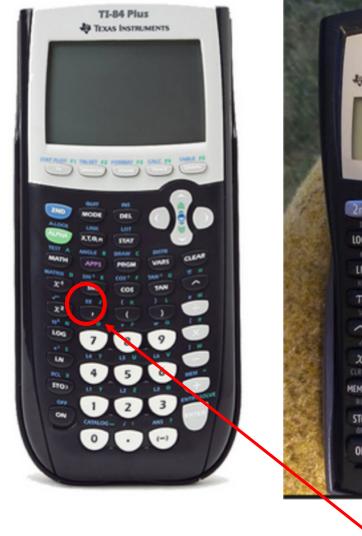
Write the Following in Scientific Notation:

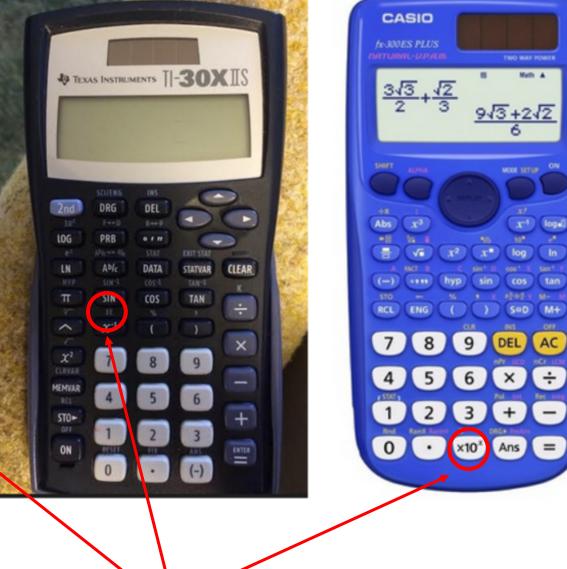
1.) 28000000

2.) 280.0

3.) 0.00000004577

4.) 0.0000060

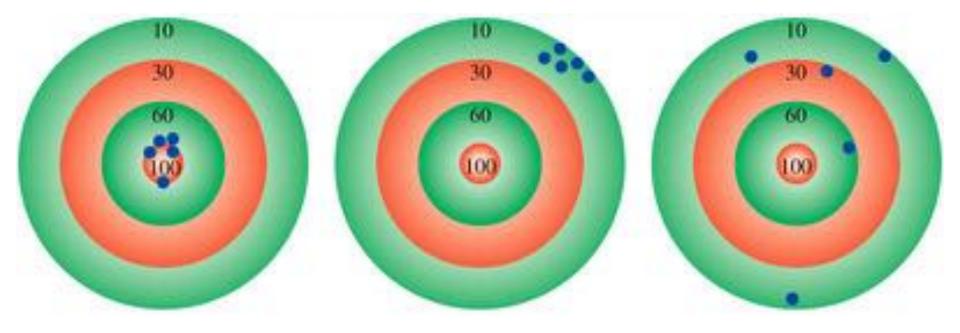

Write the Following in Standard Format:


1.) 2.45 x 10²

2.) 3.98 x 10⁶

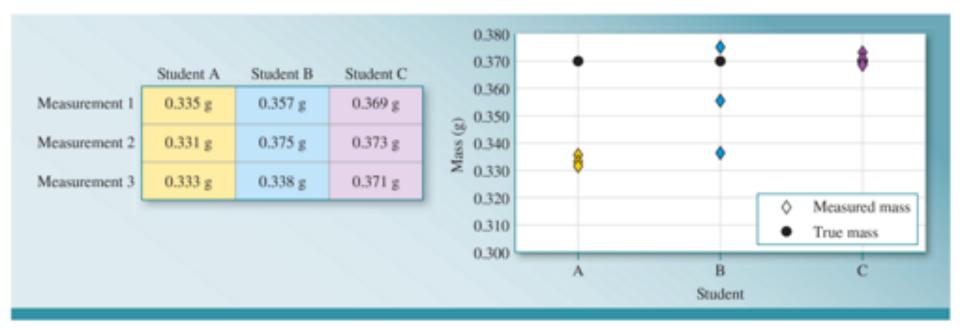
3.) 4.29 x 10⁻³

4.) 8.0 x 10⁻⁶



Use EXP, SCI, EE or x10^x keys on calculator

Precision and Accuracy


<u>Accuracy</u> – how close a measurement is to the true value <u>Precision</u> – how close measurements are to each other

accurate & precise precise but not accurate

not accurate & not precise

Precision and Accuracy

Percent Error

Comparison of experimental results to expected or real values

Usually reported <u>without</u> a + or - sign

% error = Experimental value - Real value x 100 Real value

Experimental value - Real value = **Deviation**

Often reported with a + or - sign

Real value:

- Widely accepted, often an industry standard value
- Average of several experiments can sometimes be used if real value is unknown

Dimensional Analysis Algebra and canceling units

Look at question:

How many kilograms of methanol will fill a 15.5 gallon fuel tank of a car modified to run on methanol? (Density of methanol = 0.791 g/mL)

What unit do you want to solve for? kilograms (kg) What information do you need?

Data in problem: Volume = 15.5 gallons Density of methanol= 0.791 g / mL

Data to look up: Gallon to Liter conversion: 1gal= 3.785L

Data to know: 1000mL = 1L & 1000g = 1kg

 $\frac{kg}{1} = \frac{0.791g}{1ml} x \frac{1kg}{1000g} x \frac{1000mL}{L} x \frac{3.785L}{1gal} x \frac{15.5gal}{1} = 46.4kg$

Dimensional Analysis Problems

1) How many kilograms of methanol will fill a 15.5 gallon fuel tank of a car modified to run on methanol? (Density of methanol = 0.791 g/mL; 1 gal = 3.785 L) A: 46.4 kg

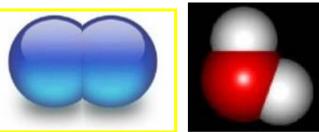
3) A cube with sides measuring 7.50 m has a mass of 0.04567 mg. What is the density of the cube in μ g/mL? A: 1.08 x 10⁻⁷ μ g/mL

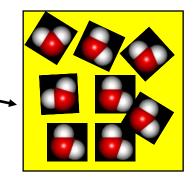
Classifications of Matter

What is in the material you are investigating?

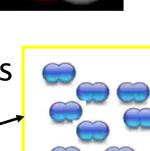
Pure materials

Atom:

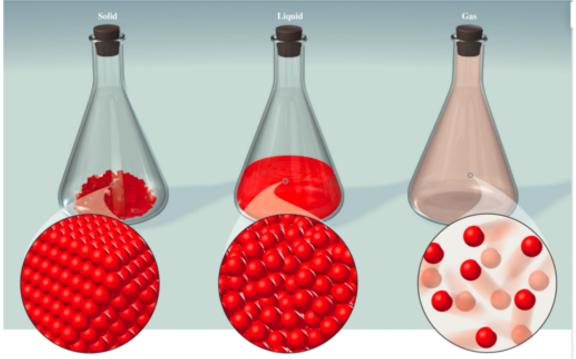

- Smallest distinctive unit w/ properties of element
- Ions are charged atoms


<u>Molecule</u>:

• 2 or more atoms together


Pure Substance:

- specific composition & distinct properties
- **TWO** types of pure substances:
 - Element \rightarrow one type of atom -
 - Compound → more than one type of atom chemically bonded
 - Compounds contain more than one element still a pure substance!!!



States (Phases) of Matter

Solid:

- Particles close together
- Orderly arrangement
- Little freedom of motion
- Specific shape & volume

Liquid:

- Particles free to move around each other
- Specific volume
- No specific shape

Gas:

- Particles very far apart
- Particles free to move around
- No specific shape or volume

Liquids & gases are fluids - they can "flow"

Mixtures

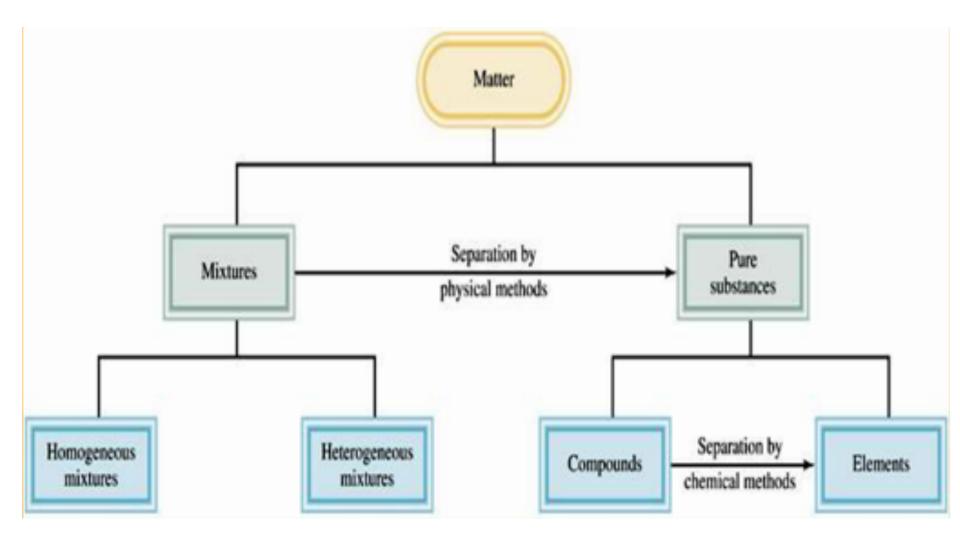
Mixture: Combination of 2 or more pure substances

Can be separated by physical means

Homogeneous Mixture Heter

- •Substances stay mixed
- •No distinct layers
- Uniform properties
- •Also called a <u>"solution"</u>

14 karat gold Mixture of gold and silver


Heterogeneous Mixture

- Substances separate easily
- •Distinct layers often seen
- •Properties may not be uniform

Iron filings and sand

Matter Summary

	Heterogeneous mixture	Homogeneous mixture	Pure ³² Substance
800 × 450 - bettycrocker.com			
300 × 199 - webelements.com			element
900 × 675 - britannica.com			compound
900 v 675 - britannica.com			compound
450 × 450 - amazon.com		solution	
SALT 800 × 400 - health harvard edu			compound

Physical and Chemical Properties of Matter

Can be used to identify & separate substances

Physical Properties of Matter

Can be changed without changing molecular composition

Chemical identity is NOT CHANGED eg: smashing a window – still glass melting ice – still water

Phase changes are physical changes (solid to liquid to gas etc.) Melting, freezing, boiling, etc.

CHEMICAL BONDS ARE NOT BROKEN DURING PHASE CHANGES!

Can be used to ID a substance without damage Color, odor, solubility, conductivity, density molecular mass, boiling/melting points Original compound can be recovered

Chemical Properties of Matter

Describe how chemicals react with each other

- What will they react with? How will they react?
 - Generate heat or light?
 - Burn? Explode?
 - Decompose slowly? (Rusting, rotting)

Compositional changes to molecules

- Often called a chemical change
- Original material changed on an atomic level

Original compound no longer present

• Compound cannot be restored to its original form without another chemical change

Extensive and Intensive Properties

Extensive Property: Depends on amount of matter present

ex: mass, length, volume, heat, <u>intensity</u> of color or odor

ex: Temperature, boiling point, color, odor

Often a calculated ratio ex: Density (mass/vol ratio) Molar mass (grams/mol) Specific heat (J/g)

Intensive properties can be used to identify a material, extensive properties cannot. Why?