1					Pe	eriodi	іс Та	able	of th	e El	emer	nts					18
l H Hydrogen 1.008	2											13	14	15	16	17	2 He Helun 4000
Li	4 Be beytun 8012				ha	a	þ	te	2 ľ				ų.	N Vitropen 14.207	8 Orygen 15.309	9 F 76.0110 15.910	10 Ne Neon 20.110
Na Sedan 22.860	12 Mg Magnesium 24.305	з	4	5	6	7			10	11	12	I3 Al Aluninum 21.142	Si Si 31000	15 P Phosphorus 20.974	16 S 5.00 20.000	17 Cl 2540	18 Ar Agan 20.348
19 K Potassium 20.008	Calculation Calculation 40.079	Sc former 44,955	22 Ti Taniun 47.607	23 Veradum 50.942	24 Cr Choniun 51.885	25 Mn Margariese 54.83	Fe bas states	27 Co cost sum	28 Ni Now Silli	29 Cu Copper 63.546	30 Zn 210 63.38	Ga Gatun 68.722	32 Germanium 72.624	As Americ 74,802	34 Se belerium 78,971	35 Br Donine 78.804	36 Kr Nysten 14.791
37 Rb Addition 51.488	38 Sr bootum 17.02	37 19 10) (41 North			2 2 1	6	Pd Polaton 134.0	Ag		49 0 10 10 10			52 Fe	53 lidee 120.00	54 Xee Xanan 131,234
Cesture Cesture 132 MS	56 Ba Batun 107.005	57-71 Lanthanides	72 Hf Heli	73 Ta Tetalun 180.940	74 W 7.000	75 Re Resun	Os Contun 196.23	77 Ir 86.20	78 Pt strum st.ast	Au Guil 196.967	80 Hg HeroJy 200 Met	BI Til Tuilun 20190	B2 Pb Lead	Bi Birmath	Po Polasium polasium	85 Att Attalice 200.007	86 Rn Padon 222.015
67 Fr Francium 223.000	88 Ra Fadun 201.005	Assess	R	Db Db Db	IOL Set PM	B	Hs Hs Per	Mr. PR	E	R R pra	Ci F73		FI	uncon	De la composición de la compos	Ununseption uninces	Uluo Ulunochun unknown

\$7	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Landhamum	Celum	Pression	Nextyman	Promethium	Senature	Europium	Geblelow	Terblum	Dysposium	Holmium	Dhim	Thulum	10erblum	Latelum
138.905	140.115	140.905	144,240	144,913	132.36	121.304	107.25	158.825	162.503	164.900	167.259	158.804	173.065	174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Address	Thorum	Protectinium	Cranium	Neptunium	Puterium	Aneitiun	Carlum	Derielum	Californium	Ensteinium	Femium	Mendelevium	Nobelum	Laurencium
227.005	232.005	201.005	238.029	237.048	244.004	243.001	247.070	247.070	251.080	(294)	257.065	208.1	258.101	[242]

Anal Metal	Analise Earth	Transition Wetar	Basic Metal	Seninety	Normetal	Halopen	Noble Gas	Lanmanine	Adhiat	
										status had here

advector tot 1010 and 1010

Mendeleev's Periodic Table 1869

Known elements arranged in order of increasing **atomic mass** from left to right and from top to bottom in groups.

Elements with similar properties are placed in same column.

	Ц						
	1						
He	Li	Be	В	С	N	0	F
4	7	9	11	12	14	16	19
Ne	Na	Mg	AI	Si	Р	S	CI
20	23	24	27	28	31	32	35
Ar	K	Ca		Ge	As	Se	Br
40	39	40			75	79	80
Kr	Rb	Sr	In	Sn	Sb	Те	- I
84	85	88	115	119	122	128	127
Xe	Cs	Ba	TI	Pb	Bi		
131	133	137	204	207	209		
Rn							
(222)							

Used table to predict properties of undiscovered elements!

Eka-Silicon ----- Germanium MM: 72 MM: 72.6 Density: 5.5g/mL Density: 5.47g/mL Color: dirty gray Color: grayish white

Early 1900's: Henry Moseley discovered connection between **atomic number** & periodic trends. Today's Periodic Table is arranged by atomic number. Electron Configuration:
 Finding a home for each electron
 The energy of an electron is defined by both n & l

- Principle shells (size)
 n = 1,2, 3, 4 or 5
- Subshells (shape)
 - $\ell = 0, 1, 2, \text{ or } 3$
 - n determines number of subshells
 - s, p, d, f orbitals
 - <u>Shielding</u> impacts relative energies

Many-electron atom (f subshell not shown)

Rules & Principles Governing e⁻ Configurations

Pauli Exclusion Principle:

- No 2 e⁻ in an atom can have the same set of 4 quantum #s
 - If in the same orbital, e^{-} must have opposite spins $\uparrow \downarrow \uparrow \downarrow$

Hund's rule:

- Electrons in the same subshell occupy degenerate orbitals singly, before pairing
 - Degenerate = same energy

Ex: Oxygen, O Z = 8

 $\frac{\uparrow\downarrow}{1s} \frac{\uparrow\downarrow}{2s} \frac{\uparrow\downarrow}{2p} \frac{\uparrow}{2p} \frac{\uparrow}{2p}$

The Aufbau Principle:

- In general, each successive electron added to an atom occupies the lowest energy orbital available
 - There are some exceptions

(Z = 1) H 1s¹ (Z = 2) He 1s² (Z = 3) Li 1s²2s¹

1s

2s

Orbital Filling in Multi-electron Atoms

5

- Fill low to high energy
- 2 electrons per orbital
- Shielding impacts the energy of orbitals
- Use chart to account for overlap of n values
- 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s
- Format: spdf or orbital notation
- Ends when a home is found for each electron

Electron Configuration con't

- Defines the orbital ("home") for each electron
- # electrons = atomic number (Z) of atom (if neutral)
 - Max 2 electrons per orbital

- Energy increases from bottom to top
 - Higher energy levels at top
- Boxes or lines represent orbitals
 - # lines at one level =
 # degenerate orbitals
- Arrows (11) represent e⁻
- 2 e⁻ allowed per orbital
 - one arrow up & one down
 to show the different spins

Generally do not want to draw a box, so use other formats

Formats for Electron Configurations

Electron Configuration notation

- Front number = energy level
- Letter = type of orbital (s, p, d, or f)
 - Degenerate orbitals are combined together
- Superscript = # electrons in that type of orbital
 - Degenerate orbitals are combined, so the 1 superscript can be more than 2 if it is a p, d, or f orbital (p max 6, d max 10, f max 14)

Orbital Notation (diagram)

- Number = energy level
- Letter = type of orbital
 - Degenerate orbitals are NOT combined
- Arrows = electrons
 - Put one e⁻ in each degenerate orbital before pairing
 - If 2 e⁻ in one orbital, one arrow must be up, the other down

Example: C: Z = 6 $\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow$ 1s 2s 2p 2p 2p

Examples:

Ne: Z = 10 $1s^22s^22p^6$

Na: Z = 11 $1s^22s^22p^63s^1$

Writing Electron Configurations

Sulfur:

Vanadium:

Noble Gas Configuration

- Abbreviation of Electron Configuration (ex: Na: [Ne]3s¹)
- Noble gas symbol replaces the portion of the e⁻ config. that is identical to the e⁻ config. of the noble gas.
- Always use the largest noble gas that is smaller than the element
- Can use for either spdf or orbital notation
- Will always start with an s orbital just not 1s.
- ex: Arsenic

regular configuration: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p³

• ex: Strontium

 Exceptions To The Aufbau Principle
 Half filled & filled subshells provide additional stability Cr and Cu ½ fill/fill their 3d shell before the 4s shell.
 Elements in same columns as Cr & Cu behave in same way. Similar behavior seen in p block.

Cr & Cu are the only exceptions you need to know.

			3 <i>d</i>	4 <i>s</i>	
	Sc	[Ar]	†	↑ ↓	$[\mathrm{Ar}]3d^{1}4s^{2}$
	Ti	[Ar]	† †	† ↓	$[Ar]3d^2\!4s^2$
Cr: 3d ½ full & 4s ½ full	v	[Ar]	† † †	↑ ↓	$[Ar]3d^{3}4s^{2}$
	Cr	[Ar]	↑ ↑ ↑ ↑	1	[Ar]3d ⁵ 4s ¹
	Mn	[Ar]	† † † †	† ↓	$[Ar]3d^{5}4s^{2}$
	Fe	[Ar]	†↓ † † †	† ↓	$[Ar]3d^{6}4s^{2}$
	Co	[Ar]	↑↓ ↑↓ ↑ ↓ ↑	† ↓	$[Ar]3d^{7}4s^{2}$
Cu: 3d full	Ni	[Ar]	↑↓ ↑↓ ↑↓ ↑	↑ ↓	$[Ar]3d^{8}4s^{2}$
	Cu	[Ar]	<u> </u>	1	[Ar]3d ¹⁰ 4s ¹
	Zn	[Ar]	$\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$	† ↓	$[Ar]3d^{10}4s^2$

Magnetism in Multi-electron Atoms

- +1/2 & -1/2 spins will cancel if electrons paired
- No magnetic properties without spin present
 - # unpaired electrons proportional to magnetic properties

Diamagnetic All electrons paired Ne: 1s²2s²2p⁶

Paramagnetic

At least 1 unpaired electron Fe: 1s²2s²2p⁶3s²3p⁶4s²3d⁶

The Modern Periodic Table

- Representative Elements: (main group elements)
 - Incomplete s or p shell determine elemental properties
- Transition metals d orbitals also play a role in bonding

1 1A				Repres	entative ts			Zinc Cadmin Mercur	um 'Y								18 8A
1 H	2 2A			Noble	gases			Lantha	nides			13 3A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be			Transit metals	ion			Actinic	les			5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8		10	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	(113)	114	(115)	116	(117)	(118)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	10.
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	La

Some Groups in the Periodic Table

Valence and Core Electrons Valence electrons:

- Highest energy shell (largest principle quantum #, n)
- Furthest from nucleus
- Outermost electrons
- Available for bonding
 - Determine the behavior of the atom

Core electrons

- Located on the inside in inner shells.
- Principal quantum number is lower

Example

Oxygen, O valence electrons Core electrons Z = 8 e- = 6 Valence e⁻

 $1s^{2}2s^{2}2p^{4}$

e- = 2

TABLE 8.1

Electron Configurations of Group 1A and Group 2A Elements

Gr	oup 1A	Gro	oup 2A
Li	$[\text{He}]2s^1$	Be	[He] $2s^2$
Na	$[Ne]3s^1$	Mg	$[Ne]3s^2$
K	$[Ar]4s^1$	Ca	$[Ar]4s^2$
Rb	$[Kr]5s^1$	Sr	$[Kr]5s^2$
Cs	$[Xe]6s^1$	Ba	$[Xe]6s^2$
Fr	$[Rn]7s^1$	Ra	$[Rn]7s^2$

Effect of Valence Electrons on Elements

Octet Rule:

- Elements most stable with 8 valence electrons (2s + 6p)
- Noble gases have 8 valence electrons
 - No e⁻ want to be added or removed
 - Why they are so unreactive
- Main group elements form ions to become isoelectronic with the noble gases
 - Same electron configuration
- He & H follow duet rule
 - 2 e⁻; too small for 8e⁻

Ionization

Atoms gain or lose electrons to obtain an octet

- Electrons are negatively charged
- Gaining electrons increases negative particles in atom
 - More electrons than protons
 - Forms negative ions
 - Called anions
- Losing electrons decreases negative particles in atom
 - More protons than electrons
 - Forms positive ions
 - Called cations
- Main Group elements gain or lose s & p e⁻ to get 8
- Transition metals all form cations remove e⁻ from s orbital before d orbital (ie 4s e⁻ lost before 3d e⁻)

•Li
$$\longrightarrow$$
 Li⁺ + e⁻ $1s^22s^1 \rightarrow 1s^2$
e⁻ + :F[•] \longrightarrow :F[•] $1s^22s^22p^5 \rightarrow 1s^22s^22p^6$

Writing Electron Configurations for lons Remove Electrons from Highest Energy Level First

17

Magnesium ion (Mg^{2+}) : Magnesium atom: 1s²2s²2p⁶3s² Magnesium ion: Fluorine ion (F⁻): Fluorine atom: 1s²2s²2p⁵ Fluorine ion: Manganese (II) ion (Mn²⁺): Manganese atom: 1s²2s²2p⁶3s²3p⁶4s²3d⁵ Manganese ion:

Periodic Properties in Main Group Elements

	IA	,																VIIIA
1	H		Te	able	of Pa	uling	Elec	trone	egativ	vity V	alue	s						2 He
	2.1	IIA											IIIA	IVA	VA	VIA	VIIA	
2	3 T:	4 P o											5 D	6	7 N	8	9 F	10 No
2	1.0	1.5											2.0	2.5	3.0	3.5	4.0	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg	шв	IVB	VB	VIB	VIIB	_	-VIII-		IB	IIB	AI 15	1.8	2.1	25	CI 3.0	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	0.8	38	1.5	40	41	42	43	. 1.8	1.8	1.8	47	1.6	1.6	1.8	2.0	2.4	2.8	54
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	0.8	1.0	1.2	1.4	1.6	1.8	1.9	. 2.2	2.2	2.2	1.9	1.8	1.8	1.8	1.9	2.1	2.5	
6	55 Ce	56 Ro	57 I.a	72 Hf	73 To	74 W	75 De	76	77 Ir	78 Dt	79	80 Ha	81 T1	82 Dh	83 R;	84 Po	85	86 Dn
	0.7	0.9	La	m	14		Re	US	n	I.	Au	ng	1.8	1.9	1.9	2.0	2.2	КП
7	87	88	89	104	105	106	107	108	109	110	111	112		114		116		
'	Fr 0.7	Ra 0.9	Ac	RI	DP	Sg	RP	Hs	Mt	ł	{							
													1				1	

Lanthanides	58	⁵⁹	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Genchem1.chem.okstate.edu

Trends in the Periodic Table

Effective Nuclear Charge (Z_{eff})

- The attractive force felt by an electron in an atom
- Takes into account two things:
 - The actual nuclear charge (Z)
 - The repulsive effects of the other electrons (referred to as shielding effects)
 - Most shielding is due to core electrons
- Depends on size of nucleus & energy level

Trends in the Periodic Table

When looking at trends, consider 3 things:

- •Amount of positive charge in nucleus (Z)
- Distance of the electron from the nucleus (Energy level)
- Number of other electrons between the electron in question and the nucleus (Shielding)

Lithium

- 3 protons
- 2nd energy level
- 2 core electrons

Rubidium

- 37 protons
- 5th energy level
- 36 core electrons

Fluorine

- 9 protons
- 2nd energy level
- 2 core electrons

lodine

- 53 protons
- 5th energy level
- 46 core electrons

Sizes not exactly to scale

Atomic Radius

Atomic radius increases from top to bottom in a group/column

- Electrons are shielded from nucleus
- Previous shells blocks attraction
- Effective nuclear charge decreases
- Large size difference between shells

Atomic radius decreases from left to right across a row/period

- Little shielding as all electrons in same shell
- Effective nuclear charge higher as protons added
- Electrons pulled closer to nucleus

Ionic Radius

F

Li

Li⁺

F-

- Low effective nuclear charge
- More electrons
- More repulsion

Cations smaller than atoms

- High effective nuclear charge
 - Fewer electronsLess repulsion

Ionization Energy

Energy needed to remove an e- from a gaseous atom or ion

 $X(g) \rightarrow X^+(g) + 1e$ - Endothermic Process (requires energy)

Decreases top to bottom: Bigger atom = more shielding Increases from left to right: Atoms want to gain electrons

Ionization Energy con't

3rd ionization energy > 2nd > 1st

- takes less energy to remove the first electron
- 2nd , 3rd , 4th , etc. electrons are held more strongly

1 + 2 $3.94 \times 10^{-18} \text{ J}$ to remove 1 + 2 $8.72 \times 10^{-18} \text{ J}$ to remove

Helium: removing 2nd e⁻ requires more than 2X as much energy Very large jump once all valence e⁻ have been removed Ionization Energies of Aluminum

Elemental Ionization Energies

TAI	BLE	4.2	Ioniza	tion En	ergies (ii	a kJ/mo	ol) for E	lements	3 throug	;h 11*	
	z	IE1	IE_2	IE_3	IE_4	IE5	IE ₆	IE7	IE_8	IE9	IE ₁₀
Li	3	520	7,298	11,815							
Be	4	899	1,757	14,848	21,007						
В	5	800	2,427	3,660	25,026	32,827					
С	6	1,086	2,353	4,621	6,223	37,831	47,277				
Ν	7	1,402	2,856	4,578	7,475	9,445	53,267	64,360			
0	8	1,314	3,388	5,301	7,469	10,990	13,327	71,330	84,078		
F	9	1,681	3,374	6,050	8,408	11,023	15,164	17,868	92,038	106,434	
Ne	10	2,080	3,952	6,122	9,371	12,177	15,238	19,999	23,069	115,380	131,432
Na	11	496	4,562	6,910	9,543	13,354	16,613	20,117	25,496	28,932	141,362

Electron Affinity

Energy released when an e⁻ is added to a gaseous atom

 $X(g) + 1e \rightarrow X^{-}(g)$ Exothermic Process (releases energy)

- Decreases top to bottom
- Increases left to right
 - Except column 18
- Fluorine at top right
 - small atom
 - limited shielding
 - nucleus relatively large compared to overall size

1	1						18
H +72.8	2	13	14	15	16	17	He (0.0)
Li	Be	B	C	N	O	F	Ne
+59.6	≤0	+26.7	+122	-7	+141	+328	(-29)
Na	Mg	Al	Si	P	S	Cl	Ar
+52.9	≤0	+42.5	+134	+72.0	+200	+349	(-35)
K	Ca	Ga	Ge	As	Se	Br	Kr
+48.4	+2.37	+28.9	+119	+78.2	+195	+325	(-39)
Rb	Sr	In	Sn	Sb	Te	I	Xe
+46.9	+5.03	+28.9	+107	+103	+190	+295	(-41)
Cs +45.5	Ba +13.95	Tl +19.3	Pb +35.1	Bi +91.3	Po +183	At +270	Rn (-41)

2nd electron affinities lower: Ion is already negative doesn't want to add more negative charges

Electronegativity: measure of attraction for e⁻ in a chemical bond - follows similar trend; F has greatest electronegativity

Metallic Character

Metals tend to be:

- Shiny & lustrous
- Malleable
- Ductile
- Good conductors of heat & electricity
- Low ionization energy
 - form cations

Lithium

Solid Nonmetals tend to be:

- Dull with variable colors
- Brittle
- Poor conductors
 - High ionization energy
 - form anions

Metallic Character:

- Increases from top to bottom
- Decreases from left to right

Trends in the Periodic Table

1.) Which has the highest ionization energy: nitrogen, phosphorus, arsenic, or antimony?

2.) Which atom is smaller, potassium, calcium, iron, or arsenic?

3.) Which is the largest ion, K⁺, Ca²⁺, Se²⁻, Br⁻?

4.) Which has the lowest electronegativity, fluorine, chlorine, bromine, or iodine?