# **Chapter Three**

## Quantum Theory & the Electronic Structure of Atoms

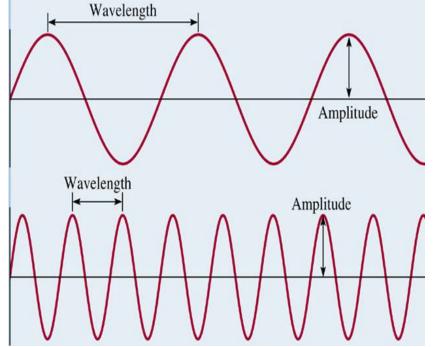
http://clipart-library.com

## **Wave Theory**

# Repeating disturbance spreading out from a defined origin Characterized by wavelength, frequency and amplitude

## Wavelength $(\lambda)$

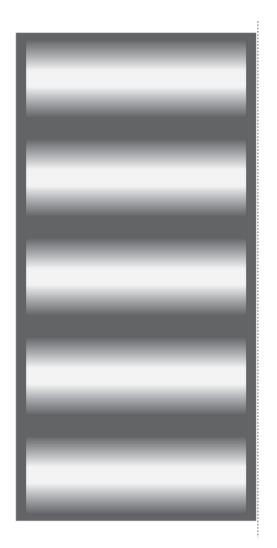
Wave


- Distance between identical pts
- •Units some form of meters

## Frequency (v)

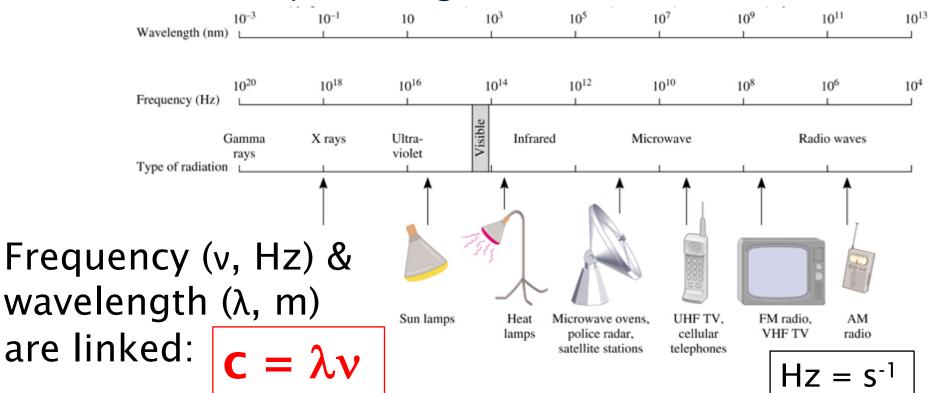
- •Number of waves that pass through a point in 1 second
- Units of cycles/sec or Hz (s<sup>-1</sup>)

## Amplitude


- s/sec or Hz (s<sup>-1</sup>)
- Height of wave from center point
- Intensity of wave



## **Wave Theory**


#### Waves exhibit interference:

- When light passes through two narrow openings very close to each other, a pattern of light and dark lines is formed
- The lines of light are from constructive interference (the high and low points of the waves line up with each other)
- The lines of darkness are from destructive interference (the peak of one wave lines up with the trough (bottom) of another wave, etc.)
- Interference patterns are evidence of light properties



# Electromagnetic Radiation Electric field component

- Emission/transmission of energy
- In form of waves
- Has electrical & magnetic components
- Travels at the speed of light ( $c = 3.00 \times 10^8 \text{ m/s}$ )



Using the relationship  $c = \lambda v$ : What is the wavelength of an FMradiowave with a 94.9 MHz frequency?

#### A: 3.16 m

5

## **Max Planck's Quantum Theory**

#### Studied energy emitted by objects (blackbody radiation)

• Amount of energy emitted was directly related to wavelength at which energy was emitted

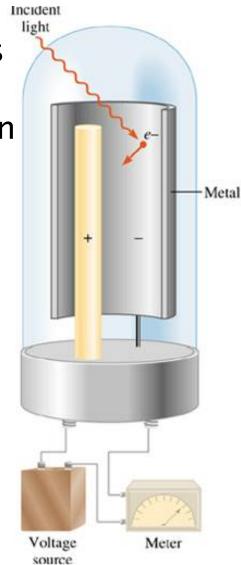
Theory: Energy is emitted/absorbed in discrete bundles

- Amounts were defined by  $\lambda$  (& v they are related!)  $E = hv = hc/\lambda$
- Can have multiples of these discrete amounts E = hv, E = 2hv, E = 3hv ...
- $h = Planck's constant = 6.626 \times 10^{-34} J s$

#### Called the smallest amount of energy a Quantum.

Didn't know why energy was quantized, but math worked over entire spectrum of wavelengths

## **Einstein and the Photoelectric Effect**


#### Experiment to prove why $E = h_V$

- Light hits metal surface causing electrons to break free
- Light energy must be at or above a certain
- frequency to dislodge electrons
- Intensity of light determines number of electron dislodged
- Intensity of light does not impact energy of dislodged electrons

Conclusion:

Light energy has particle properties in addition to wave properties

# Particles of light were later called "photons"

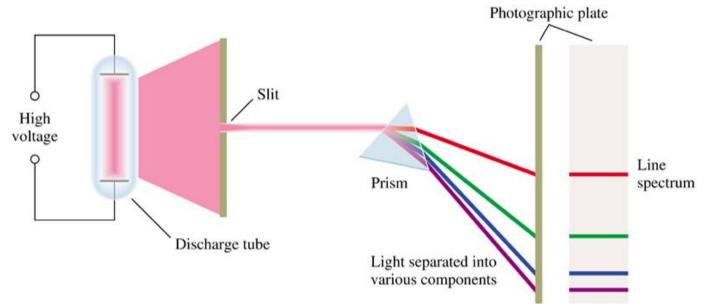


### Using E = hv ( $h = 6.626 \times 10^{-34} Js$ ) What is the energy of a radiowave with a frequency of 94.9 MHz? A: 6.29 x 10<sup>-26</sup>J

#### What wavelength has an energy of 1.00 x 10<sup>-20</sup>J? A: 1.99 x 10<sup>-5</sup> m Or 19.9 µm

## Using E = hv (h = 6.626 x 10<sup>-34</sup> Js)

What is the energy per photon and per mole of photons of violet light, with a wavelength of 415 nm?


> A: 4.79 x 10<sup>-19</sup> J/photon A: 2.88 x 10<sup>5</sup> J/mol

## **Elemental Line Spectra**

**Emission Spectra:** Pattern of radiation that is emitted when photons are released from a substance.

#### Procedure

- Add energy to an element
- Photons are emitted as a beam of light
- Separate wavelengths through a prism
- Record pattern on a photographic plate



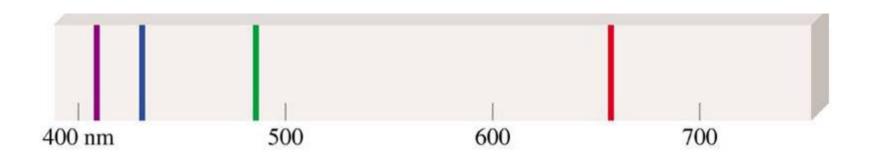
Photon

n=1n=2

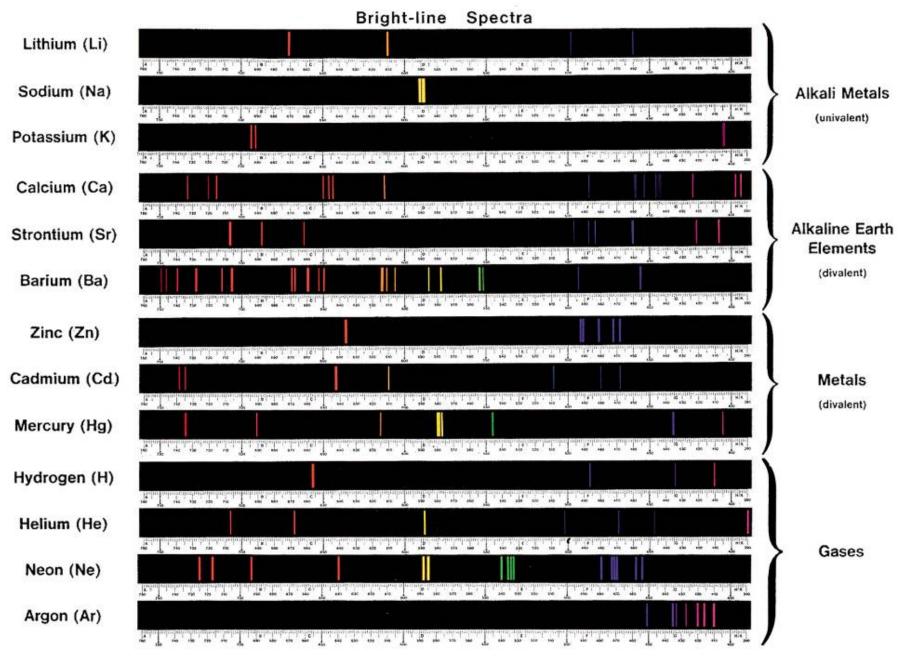
n=3

## **Continuous vs. Line Spectra**

11


#### Continuous spectrum:

- Occurs when all visible light is present: white light




#### Line Spectrum

- Occurs when light is produced through an element
- Pattern of lines is characteristic of the element
- Can be used for identification of elements



## **Elemental Line Spectra**



## **Bohr's Hydrogen Atom**

Niels Bohr (1913): Electron energy (E<sub>n</sub>) was quantized

- Similar to light/photons
- Only certain specified values allowed
- Stable levels called energy levels
- Photon absorbed/released when electron moves from 1 level to another

The energy of each stable orbit:  $E_n = -R_H/n^2$ 

- *n* is the quantum number of the level
- *n* is always an integer, 1,2,3,...etc. Proportionality constant R<sub>H</sub>
- Rydberg constant
- $R_{H} = 2.18 \times 10^{-18} J$

Leads to orbit description of atoms – we know today this is not accurate

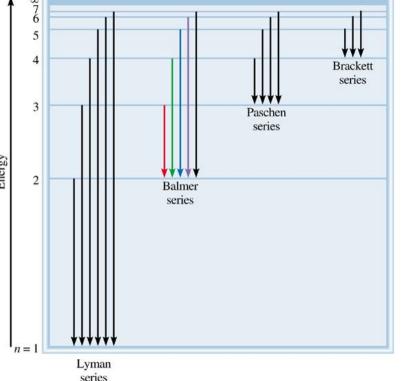
Photon

n=2

n = 3

## **Energy Level Calculations**

All calculations done by comparing energy levels


- Electron moves between levels
- E =  $-R_H (1/n_f^2 1/n_i^2)$

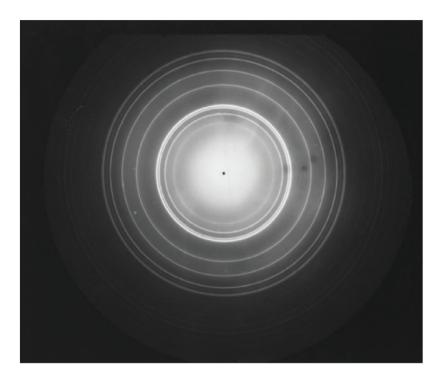
Energy emitted or absorbed

High to low level:
– energy released (–)

• Low to high level:

- energy absorbed (+)




Ground state: An e<sup>-</sup>'s lowest possible energy level Excited state: All other levels Calculate the wavelength of the electron shift from<sup>5</sup> n = 4 to n = 2. Is light emitted or absorbed?

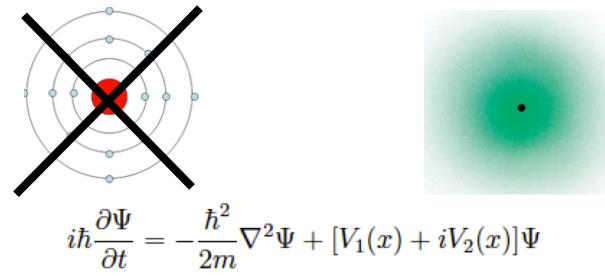
$$\Delta E = -R_H \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

 $R_{\rm H} = 2.18 \text{ X} 10^{-18} \text{ J}$ 

#### A: $\lambda = 486$ nm Visible blue green light is emitted (neg E value)

## **Wave Properties of Electrons**




- de Broglie predicted that electrons should have wave properties
- Davisson & Germer successfully showed that electrons produce diffraction patterns like x-rays

#### Electrons, like light, are both particles & waves

## Modern View of the Atom: Quantum Mechanics – a very brief intro

17

- (Nucleus in center, protons & neutrons in nucleus)
- Electrons outside nucleus
  - located in "cloud" surrounding the nucleus
  - likely location based on probability functions
  - quantum numbers used to describe probable location
  - impossible to know both position and velocity (momentum) of an electron at the same time (Heisenberg Uncertainly Principle)

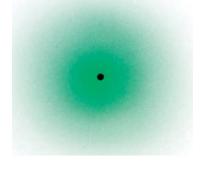


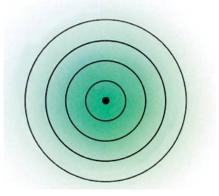
## **Quantum Numbers and Atomic Orbitals**

#### Atomic orbital

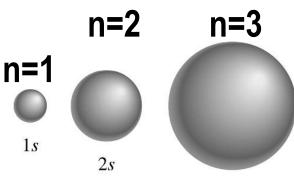
- A region in space with a high probability of finding an electron (high electron density).
- Identified by 4 quantum numbers.

#### 4 Quantum Numbers (think of it as a dorm address)


- 1. Principal quantum number (n): Building
- 2. Angular momentum quantum number (1) Floor
- 3. Magnetic quantum number (m<sub>l</sub>)
- 4. Electron spin quantum number (m<sub>s</sub>)


Room #

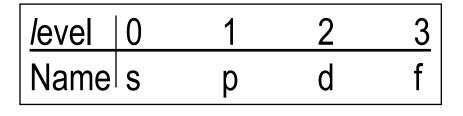
Bed


## The Principal Quantum Number (n)

- Restricted to the positive integers: 1, 2, 3, 4, 5, 6, 7
- The shell or <u>energy level</u> of the orbital






- Indicates the size of the orbital
  - max distance e<sup>-</sup> can travel from nucleus
- Integers correspond to <u>row numbers</u> in Periodic Table
  - row an element is in tells you the highest energy level in the ground state



35

#### The Angular Momentum Quantum Number (*l*) <sup>20</sup>

- Indicates orbital shape
  Designation: s, p, d or f
- Designates the subshell
  - Values range from 0 to n-1
  - 0-6 theoretically, but realistically 0-3
  - Give rise to "Blocks" in periodic table



| Energy<br>Level (n) | Math      | Allowed <i>l</i><br>values | Orbitals  |
|---------------------|-----------|----------------------------|-----------|
| 1                   | 1 - 1 = 0 | 0                          | s only    |
| 2                   | 2-1 = 1   | 0, 1                       | s & p     |
| 3                   | 3-1 = 2   | 0, 1, 2                    | s, p, & d |

#### **Orbital Shapes = l quantum number**

15

25

lanl.gov

 $yz^2$ 

 $z(x^2 y^2)$ 

35

 $x(x^2-3y^2)$ 

 $y(3x^2y^2)$ 

### $\ell = 0: s$ orbitals

- Spherical
- One per energy level
- l = 1: p orbitals
  - 2 teardrops joined at center \*\*
  - Three per energy level

## *l* = 2: *d* orbitals

- Most are like two p orbitals along different axes
- 5 per energy level
- *l* = 3: f orbitals.
  - Complicated shapes
  - 7 per energy level



## The Magnetic Quantum Number (*m*<sub>l</sub>):

#### Determines the orientation in space of the orbitals

- "orientation" refers to proximity to axes (x, y, z)
- Integers from *l* to + *l*

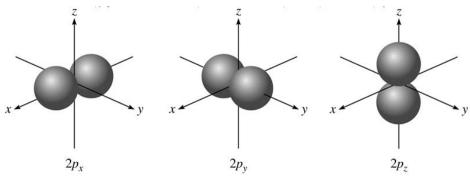
#### Determines the <u>number</u> of orbitals in a subshell

• The number of possible values for  $m_{\ell} = 2\ell + 1$ 

| Orbital | l value | Allowed m <sub>l</sub> values | Number of Orbitals<br>per Energy Level |
|---------|---------|-------------------------------|----------------------------------------|
| S       | 0       | 0                             | 1                                      |
| р       | 1       | -1, 0, 1                      | 3                                      |
| d       | 2       | -2, -1, 0, 1, 2               | 5                                      |
| f       | 3       | -3, -2, -1, 0, 1, 2, 3        | 7                                      |

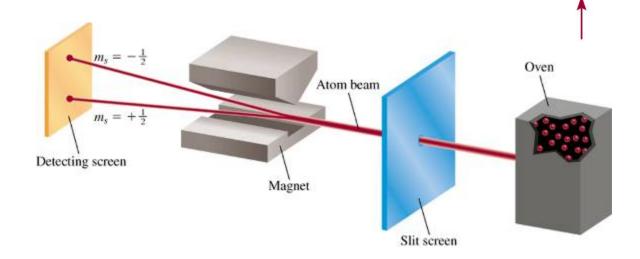
#### Orbitals with same n & l values are "degenerate"

#### degenerate = same energy


(Note: In some cases there are slight energy differences)

Possible quantum numbers for an electron in a 4p orbital:

n = 4


 $\ell$  can be 0 to 4-1 (0, 1, 2, 3) BUT if it is a p orbital  $\ell = 1$  $m_{\ell}$  can be  $+\ell$  to  $-\ell = -1, 0, +1$ 

Since the three 4p orbitals are degenerate, any of the three  $m_{\ell}$  values could be correct



## **Electron Spin Quantum Number (m<sub>s</sub>)**

- A magnetic field is induced by the moving electric charge of an electron as it spins
  - Opposite spins cancel one another
  - No net magnetic field for the pair
  - Allows 2 electrons to occupy 1 orbital
  - Unpaired e<sup>-</sup> lead to magnetism
- Two possible values: +1/2 and -1/2



S

## **Quantum Numbers Summary**

| TABLE 3.2        | Allowed and $m_{\ell}$ | Allowed Values of the Quantum Numbers $n$ , $\ell$ , and $m_{\ell}$ |                                                                                |  |
|------------------|------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| When <i>n</i> is | <i>የ</i> can be        | When <i>P</i> is                                                    | $m_\ell$ can be                                                                |  |
| 1                | only 0                 | 0                                                                   | only 0                                                                         |  |
| 2                | 0 or 1                 | 0<br>1                                                              | only 0<br>-1, 0, or +1                                                         |  |
| 3                | 0, 1, or 2             | 0<br>1<br>2                                                         | only 0<br>-1, 0, or +1<br>-2, -1, 0, +1, or +2                                 |  |
| 4                | 0, 1, 2, or 3          | 0<br>1<br>2<br>3                                                    | only 0<br>-1, 0, or +1<br>-2, -1, 0, +1, or +2<br>-3, -2, -1, 0, +1, +2, or +3 |  |

**Quantum Numbers & the Periodic Table** 

- Principle quantum number, n
  - Row number of periodic table, values of 1-7
- Angular momentum quantum number, *l* 
  - Specific area of periodic table, spdf "blocks"
- Can follow the periodic table to fill e<sup>-</sup> configuration
- Can use location on Periodic Table to determine where e<sup>-</sup> configuration will end

| 1 <i>s</i> | Electrons in the outermost |            |  |  |  |
|------------|----------------------------|------------|--|--|--|
| 2s         | energy level are the       | 2p         |  |  |  |
| 35         | valence electrons.         | 3p         |  |  |  |
| 4 <i>s</i> | 3d                         | 4 <i>p</i> |  |  |  |
| 5 <i>s</i> | 4 <i>d</i>                 | 5p         |  |  |  |
| 6 <i>s</i> | 5d                         | 6 <i>p</i> |  |  |  |
| 7 <i>s</i> | 6 <i>d</i>                 | 7p         |  |  |  |

| 4 <i>f</i> |
|------------|
| 5f         |

A possible set of quantum numbers for the last electron added to complete an atom of selenium would be:

n:

l:

m<sub>l</sub>:

m<sub>s</sub>: