Chapter Six

Energy Relationships in Chemical Reactions

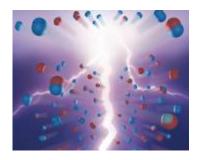
Energy (U): Capacity to Do Work

Some types of energy:

- Radiant
 - Energy from the sun
- Nuclear
 - Energy stored in the nucleus of an atom (

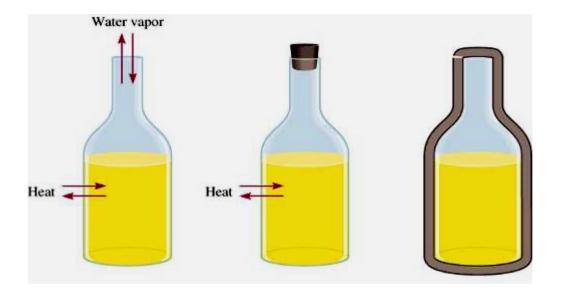
Thermal

- Energy associated with temperature
- Type of <u>kinetic energy</u>: due to molecular movement
- Chemical
 - Energy stored in chemical bonds
 - Type of <u>potential energy</u>: due to position of an object


 $= N \times m$

 $= kg m^2 / s^2$

 $= kg m^2 s^{-2}$



= Joule (J) tom

Thermochemistry Study of heat change in chemical reactions System: The part of the universe being studied Open: Energy & matter exchange with surroundings Closed: Only energy exchange with surroundings Isolated: No energy or matter exchange – rare

Surroundings: Part of the universe not being studied

Heat Transfer in a System

Heat (q): Transfer of energy due to temp. difference

Exothermic Reaction: System gives off heat (<u>Ex</u>iting)

Ex: Methane Burning: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Bonds stronger in $CO_2 + H_2O$ than in $CH_4 + O_2$

- Energy is absorbed when bonds break & released when bonds form
- In this case more energy released than absorbed
- Heat goes from system to surroundings

Endothermic Reaction: System gains heat (Entering) Ex: Ice Melting: $H_2O(s) \rightarrow H_2O(l)$

- Need energy to disrupt attractions between H₂O molecules
- Heat goes from surroundings into the system

Thermodynamics – Study of the conversions between heat & energy 4

State vs. Path Functions

State of a system:

- $\Delta = change$
- Describes specific conditions/macroscopic properties
- Composition, temp., pressure, energy, volume
- ex: Potential energy of ball at the top of the mountain

State functions:

- Properties defined by $\Delta = \text{final} - \text{initial values only}$ \rightarrow process doesn't matter ex: Height of mountain

Path functions:

 change in values varies by process
 ex: the actual distance travelled by ball on its trip to the bottom of the mountain. First Law of Thermodynamics Energy can be converted from 1 form to another but cannot be created or destroyed $\Delta U_{system} = U_{final} - U_{initial}$

Internal Energy of System: $U_{system} = U_{kinetic} + U_{potential}$

Kinetic energy: Amount of molecular motion Associated with temperature

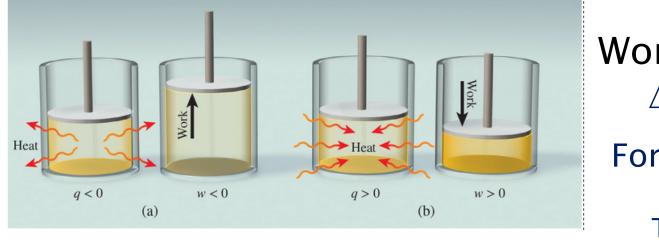
Potential energy: Energy stored in bonds Strength of chemical bonds

When studying a reaction, cannot separate kinetic & potential energy - measure total energy instead

For chemical reactions: $\Delta U_{reaction} = U_{products} - U_{reactants}$

Internal Energy & Enthalpy

Bettmann/Getty Images

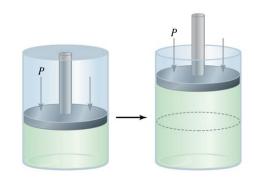

Internal Energy: Work and Heat

Energy transfer – caused by changes in heat & work in a system

$\Delta U_{system} = \mathbf{q} + \mathbf{w}$ Work (w) = force x distance = $-P \Delta V$

Work is needed to expand a system against its surroundings Negative work (-w): System loses energy to surroundings Positive work (+w): System gains energy from surroundings

L x atm = 101.32 J


Nork (w) =
$$-P\Delta V$$

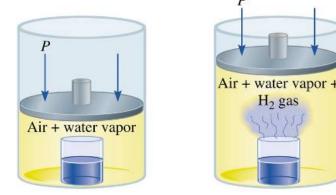
 $\Delta V = V_f - V_i$

For this situation: + ΔV Therefore: -W

8

Work and Heat

A gas expands in volume from 2.000 L to 4.000 L at STP. 350.0 J of energy are needed to maintain the new conditions.


a. Calculate work (J) done against a vacuum & against a pressure of 1.000atm. (A = 0.000J, -202.6J)
 *Note that work is reported in J, not L x atm.

b. Calculate the heat required for each system. (A = 350.0 J; 552.6 J)

Enthalpy of Chemical Reactions

For systems at constant pressure (usually ~1atm):

 $\Delta U = q + w = q_p - P \Delta V$ $\Delta U = \Delta H + P \Delta V$

Enthalpy: (H) Experimentally measured & tabulated - Can think of as heat of a reaction

At constant pressure: $\Delta H = \Delta U + P \Delta V$ Assume negligible volume change: $\Delta H = \Delta U = q_p$

There will be slight differences between ΔH and ΔU , but in many cases they are small enough to be considered negligible

$$\begin{array}{l} \mbox{Ways of Calculating}\\ \mbox{Enthalpy/Heat/Energy exchange} \\ q = ms \Delta T \\ q = C \Delta T \\ \Delta H = C \Delta T \\ \Delta H = \Delta U + P \Delta V \\ \Delta U_{system} = q + w \\ \mbox{Theoretical} \qquad \Delta U_{system} = U_{final} - U_{initial} \\ \Delta H_{reaction} = \Sigma \Delta H_{products} - \Sigma \Delta H_{reactants} \\ \Delta H_{reaction} = \Delta H_1 + \Delta H_2 + \Delta H_3 + \dots \end{array}$$

To determine which formula to use - look at information given in the problem!

Enthalpy of Reaction ($\Delta H = q_{rxn}/mol$)

Amount of heat exchanged between system and surroundings during a chemical reaction

 $\Delta H_{reaction} = \Sigma \Delta H_{products} - \Sigma \Delta H_{reactants}$

Exothermic Reactions

- Temperature increases in an isolated system.
- Heat released to surroundings is treated as a product
- Δ H is negative

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) + 197.8kJ$ $\Delta H = -197.8kJ$

Endothermic Reaction

- Temperature decreases in an isolated system.
- Heat absorbed by system is treated as a reactant
- **A H** is positive

197.8kJ + 2SO₃→2SO₂ (g) + O₂(g) $\Delta H = +197.8$ kJ

State function: Independent of path 12

Rules for Working with Heat and Enthalpy

1. Make same changes to enthalpy as to # moles If decrease or increase reactants & products, do the same for ΔH

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ $\Delta H = -197.8kJ$

 $1SO_2(g) + 1/2O_2(g) \rightarrow 1SO_3(g) \Delta H = -197.8kJ/2 = -98.9kJ$

 $\Delta H = -197.8 \text{ kJ} / 2 \text{ mol SO}_3(g)$ $\Delta H = -98.9 \text{ kJ} / 1 \text{ mol SO}_3(g)$

2. Reverse the reaction, reverse sign of ΔH

 $2SO_3 \rightarrow 2SO_2(g) + O_2(g) \qquad \Delta H = +197.8 \text{kJ}$

These rules will allow you to calculate the AH for any amount of product or reactant

Calculate how much heat is required to decompose 15.0g NO₂(g) according to this reaction: $2NO(g) + O_2(g) \rightarrow 2NO_2(g) \quad \Delta H = -114 \text{ kJ}$ Info Provided:

Calculate molar mass of NO_2 – convert mass to moles NO_2 .

Use coefficient & moles NO₂ present to find Δ H for 15.0 g.

A = +18.6 kJ ¹⁴

Calorimetry

parrinst.com

Calculating ΔH **Via Experiment: Calorimetry**

- **Calorimetry**: Measurement of heat changes
- Calorimeter: Device to measure heat (ΔT) produced by a chemical reaction
 - $\Delta T = T_{final} T_{initial}$
 - Units: generally °C

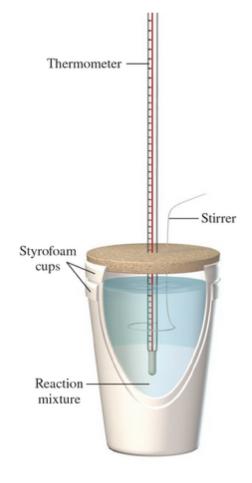
Specific Heat (s): Heat needed to raise T of 1 gram by 1°C.

- $s = q/(m \times \Delta T)$ $s_{water} = 4.184 J/g^{\circ}C$
- Units: J/g°C or cal/g°C = 1 cal/g°C

Heat capacity (C): Quantity of heat needed to raise T by 1°C

- C = m x s
- Units: J/°C or J/K
- Heat of Reaction (q_{rxn})
 - $q = m x s x \Delta T$ (Const. Volume)
 - $q = C \Delta T$ (Const. Pressure)
 - Units: J

Commonly Used Specific Heats


TABLE 10.2	Specific Heat Values of Some Common Substances		
Subs	stance Specific Heat $(J/g \cdot C)$		
$\operatorname{Al}(s)$	0.900		
Au (s)	0.129		
C (graphite)	0.720		
C (diamond)	0.502		
Cu (s)	0.385		
$\operatorname{Fe}(s)$	0.444		
$\operatorname{Hg}\left(l ight)$	0.139		
$H_2O(l)$	4.184		
$C_2H_5OH(l)$ (et	chanol) 2.46		

Constant Pressure Calorimetry Experiments

During the experiment, heat is transferred from the reaction (system) to the water (surroundings)

- 1. Measure ΔT of water in calorimeter
- 2. Use $q = ms \Delta T$ to calculate the heat gained or lost by the <u>water</u>
- 3. Heat gained by the water in the calorimeter is lost by the system; heat heat lost by the water is gained by the system: -q_{rxn} = q_{cal}
- 4. Use q_{rxn} to determine information about system variables:

 $q_{rxn} = m_{sys} \times s_{sys} \times \Delta T_{sys}$ Always have 2 sets of variables! 1 for water (surroundings) 1 for reaction (system)

A 30.0g sample of metal is heated to 100.0° C by placing it in a boiling water bath. The metal is removed from the boiling water, and placed in 25.0g of water at 22.0°C. The final temp was 27.6°C, what is the specific heat of the metal? S_{H2O} = 4.184 J/g°C

What is your equation?

What info is provided?

Solve for q_{cal} ($q_{cal} = -q_{metal}$)

Use formula for q_{metal} to solve for s_{metal}

 $A = 0.269 J/g^{\circ}C^{19}$

Heat Evolved During a Chemical Reaction

Reaction conducted in a Styrofoam cup calorimeter

- •The calorimeter does not absorb or give off heat.
- Heat absorbed by the solution in the calorimeter (q_{cal}) is the heat that has been given off by the chemical reaction $(-q_{rxn})$

Stirrer

Styrofoam cups

Reaction mixture

Two solutions are mixed in the calorimeter 40.0 mL of 1.00 M KOH(aq) 40.0mL of 1.00M H₂SO₄(aq) T_i of both solutions = 21.00°C

Data on final solution Density: 1.02 g/mL Volume: 80.0 mL S.H.: 4.00 J/g°C Temp.: 27.85°C

Question: Calculate the enthalpy change of this reaction per mole of acid used. 20

Calculate the enthalpy change, ∆H, of this reaction per mole of acid used.

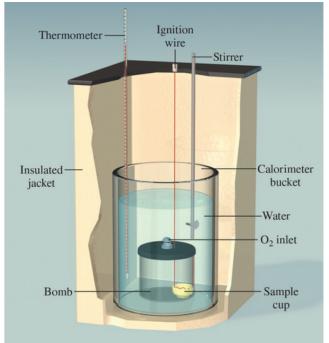
1. What is the chemical reaction? $2 \text{ KOH} + H_2 \text{SO}_4 \rightarrow \text{K}_2 \text{SO}_4(\text{aq}) + 2\text{H}_2 \text{O}$ $\Delta H_{\text{rxn}} = q_{\text{rxn}} = -q_{\text{cal}}$ $q = m \text{ x s x } \Delta T$

2. What information is given? Initial Information: 40.0 mL of 1.00 M KOH(aq) 40.0 mL of 1.00 M H₂SO₄(aq) T_i of both solutions = 21.00°C

Final information: Density: 1.02 g/mL Volume: 80.0 mL S.H.: 4.00 J/g°C (not just H₂O) Temp: 27.85°C

Note: ΔH calculated from calorimetry is heat that was transferred into the solution in the <u>CALORIMETER</u>, not water from the chemical reaction!!!

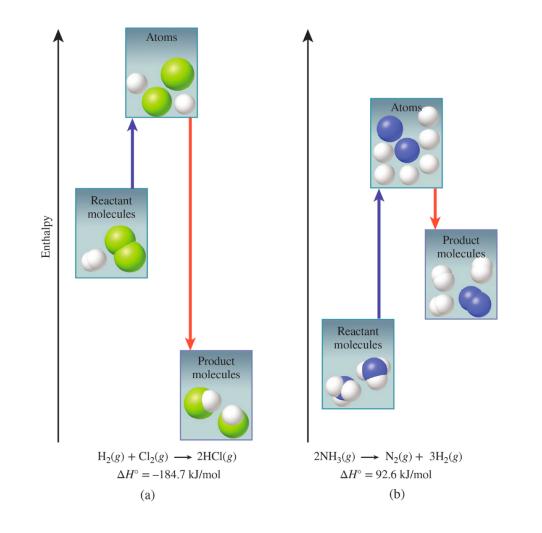
Calculating the ΔH per mole H₂O, con't


3. Calculate heat absorbed by the solution in the calorimeter q_{cal}). Need mass of solution for this.

4. Calculate the # of moles of acid used in the reaction. Need to find LR!

Calculate ΔH per 1 mole of acid used. Remember that $q_{cal} = -q_{rxn}$.

Constant Volume "bomb" Calorimetry


- Heat is still transferred from the reaction to the water bath surroundings, and the relationship -q_{rxn} = q_{cal} remains the same.
- 2. Since the reaction takes place in the "bomb" rather than in the water bath, combustion and other reactions that cannot take place in solution can be studied.
- 3. The equation $\mathbf{q} = \mathbf{C}\Delta\mathbf{T}$ is used, where C is the heat capacity of the calorimeter.
- 4. C is generally determined by burning a material with a well known ΔH of combustion, then using q and ΔT to determine C.

Constant Volume Calorimetry

A 0.2400g sample of nitroguanidine (CH₄N₄O₂; 104.07g/mol) was burned in a bomb calorimeter, increasing the temperature of the water bath from 25.000°C to 30.047°C. If the heat capacity of the calorimeter is 39.52J/°C, what is the heat content of nitroguanidine in J/g and kJ/mole?

Standard Enthalpies, Hess's Law, & Bond Enthalpy

Calculating ΔH_{rxn} Using Known Values: Standard Enthalpies of Formation (ΔH_f°) & Reaction ($\Delta H_f^\circ_{rxn}$)

The standard state of an element: $\Delta H_f^\circ = 0$

- Pure element in its most stable form at 1 atm & 20°C
- Solvents in aqueous solution are at a concentration of 1 M ex: $H_2(g) N_2(g) O_2(g) Cl_2(g) Br_2(l) Hg(l) Na(s)$ - all have $\Delta H_f^{\circ} = 0$
- The standard molar enthalpy of formation, ΔH_{f}°
- ΔH_f for 1 mol substance produced from elements in standard states
- Tabulated for compounds at 1atm and 20°C ex: $C(s) + O_2(g) \rightarrow CO_2(g) \qquad \Delta H_f^\circ = -393.5 kJ/mol$

Calculation of ΔH_{rxn} **Using Known Values**

Calculating ΔH° of a chemical reaction

- $\Delta H^{\circ}_{rxn} = \Sigma \Delta H_{f}^{\circ} \text{ products} \Sigma \Delta H_{f}^{\circ} \text{ reactants}$
- ex: $C(s) + O_2(g) \rightarrow CO_2(g)$
- Multiply each ΔH_f° by the stoichiometric coefficient for that species. Ex:

C(s) $\Delta H_f^{\circ} = 1 \times 0 kJ/mol = 0 kJ/mol$ O₂(g) $\Delta H_f^{\circ} = 1 \times 0 kJ/mol = 0 kJ/mol$ CO₂(g) $\Delta H_f^{\circ} = 1 \times -393.5 kJ/mol = -393.5 kJ/mol$

> $\Delta H_{rxn}^{\circ} = \Delta H^{\circ}_{products} - \Delta H^{\circ}_{reactants}$ = -393.5 - (0+0) = -393.5kJ/mol

*Note: If there are multiple reactants or products, you add the multiple ΔH_f° values before subtracting reactants from products. Calculate ΔH_{rxn}° for the combustion of $C_2H_5OH(I)$ $\Delta H_f^{\circ}values$ are given below $C_2H_5OH(I)+3 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$

 ΔH_{f}° Reactants: C₂H₅OH (I): -277.7 kJ/mol

 O_2 : 0 kJ/mol

Total reactants =

 $\Delta H_{f}^{~\circ} \, \textbf{Products}$

CO₂(g): -393.5 kJ/mol

H₂O(I): -285.8 kJ/mol

Total products =

 $\Delta H^{\circ} = products - reactants$

Hess's Law Of Constant Heat Summation: Another way to calculate △H

The heat of a reaction, ΔH , is constant, whether the reaction is carried out directly in one step or through a number of steps.

The equation for the overall reaction is the sum of two or more other equations (reaction steps).

$$\Delta \mathbf{H}_{\rm rxn} = \Delta \mathbf{H}_1 + \Delta \mathbf{H}_2 + \Delta \mathbf{H}_3 + \dots$$

If you reverse a chemical equation, you reverse the sign of ΔH .

$$\Delta \mathbf{H}_{\mathbf{forward}} = - \Delta \mathbf{H}_{\mathbf{reverse}}$$

Hess' Law Example #1

What is ΔH when KOH(s) reacts with H₂SO₄ (aq)?

2 KOH(aq) + $H_2SO_4(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$ This is a 2-step process - dissolve KOH then neutralize so need to use Hess' Law

Given information: Styrofoam cup calorimetry was used to determine the following:

Step 1. KOH(s) \rightarrow KOH(aq)

 ΔH_{sol} of KOH(s) = -58.4 kJ/mol

Step 2. Neutralization reaction

Δ H per mole KOH = -55.9 kJ/mol

First: Need 2 mol KOH in rxn; must double given values.

Then: Add the Δ Hs for all steps of the reactions

 $A = -228.6 \text{ kJ}^{30}$

Hess' Law: Using Info From Other Reactions

1. Find each reactant in an equation with known enthalpy

- Use multiple equations if necessary to find all reactants
- 2. Find each product in an equation with known enthalpy
 - Use multiple equations if necessary to find all products
- 3. Add reactions to get the reaction you are looking for
 - Cross out items that are both products & reactants

 stoichiometry matters, might not cross out all
 - Add multiples
- 4. Check final equation to make sure it matches the equation of interest.

Hess' Law Example #2

What is the enthalpy of the reaction between carbon and oxygen to form carbon monoxide?

2 C(graphite) + $O_2(g) \rightarrow 2 CO(g) \qquad \Delta H= ?$

You are given the following reactions with known enthalpies: $C(graphite) + O_2(g) \rightarrow CO_2(g) \quad \Delta H = -393.5 \text{ kJ}$ $2 CO(g) + O_2(g) \rightarrow 2 CO_2(g) \quad \Delta H = -566.0 \text{ kJ}$

2 C(graphite) + $O_2(g) \rightarrow 2 CO(g)$ $\Delta H = -221.0 \text{ kJ}$

Bond Enthalpy

Bond Enthalpy: reason for energy change during reactions

• Energy required to break a particular bond in a molecule in the **gas** phase.

Enthalpy change for the Reaction (ΔH) Hess' Law! $\Delta H = \Sigma \Delta H_{\text{bond breaking}} + \Sigma \Delta H_{\text{bond formation}}$ (Note that bond formation is **negative**) Enthalpy change: $2H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$ $\Sigma \Delta H_{\text{bond breaking}} = 2(\Delta H_{\text{H-H}}) + \Delta H_{\text{O}=O}$ = 2(436kI) + 499kI= 1371kJ (endothermic) $\Sigma \Delta H_{\text{formation}} = 4(\Delta H_{H-O}) = 4(-460 \text{ kJ})$ = -1840kJ (exothermic) $\Delta H_{reaction} = \Sigma \Delta H_{bond breaking} + \Sigma \Delta H_{bond formation}$ = 1371kJ-1840kJ= -469kJ $\Delta H_{reaction}$ 33 Just another example - same formula written differently

Theoretical Calculation: $\Delta H = E_{in} - E_{out}$

$$CH_{3}CH_{2}OH + 3O_{2} \rightarrow 2CO_{2} + 3H_{2}O$$

$$H H H - 3 = 2 = 3$$

$$H - C - C - O - H + O = 0 \rightarrow 0 = C = 0 + H - O - H$$

$$H H H$$

C-C Bond = 80 kcal/mole

C-H Bond = 100 kcal/mole

C-O Bond = 90 kcal/mole

O=O Bond = 120 kcal/mole O-H Bond = 110 kcal/mole

C=O Bond = 180 kcal/mole

 $E_{in}:$ 1 C-C bond x 80 kcal/mol = 80 kcal/mol 5 C-H bonds x 100 kcal/mol = 500 kcal/mol 1 C-O bond x 90 kcal/mol = 90 kcal/mol 1 O-H bond x 110 kcal/mol = 110 kcal/mol 3 O=O bond x 120 kcal/mol = 360 kcal/mol

 E_{out} : 2x2 C=O bonds x 180 kcal/mol = 720 kcal/mol 3x2 O-H bonds x 110 kcal/mol = 660 kcal/mol

1380 kcal/mol

```
1140 kcal/mol
```

 $\Delta H = E_{in} - E_{out}$ = 1140 kcal/mol - 1380 kcal/mol = -240 kcal/mol

Estimate the enthalpy change for the combustion of 1 mole of methane

1. Write the reaction: $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$

2. Calculate energy needed to break the bonds in reactants (ΔH_{BB}) and energy produced when the bonds of products form (ΔH_{BF}). <u>Bonds broken</u> ΔH <u>Bonds formed</u> ΔH

3. Calculate ΔH for the reaction ($\Delta H = \Delta H_{BB} + \Delta H_{BF}$) & divide by coefficient of CH_4 . $\Delta H_{approx} =$

 $A = -785 \text{ kJ/mol methane}^{35}$

Representative Bond Enthalpies

Table 10.4 TABLE 9.3 in your book

Some Bond Enthalpies of Diatomic Molecules* and Average Bond Enthalpies for Bonds in Polyatomic Molecules

Bond	Bond Enthalpy (kJ/mol)	Bond	Bond Enthalpy (kJ/mol)
н-н	436.4	c-s	255
H-N	393	C = S	477
н-о	460	N — N	193
H-S	368	N = N	418
н-р	326	$N \equiv N$	941.4
H-F	568.2	N - O	176
H-Cl	431.9	N = O	607
H—Br	366.1	0-0	142
н-і	298.3	0=0	498.7
С-Н	414	0-P	502
с-с	347	o = s	469
C = C	620	P-P	197
$C \equiv C$	812	P = P	489
C-N	276	s-s	268
C = N	615	s = s	352
$C \equiv N$	891	F-F	156.9
c-o	351	CI-CI	242.7
$C = O^{\dagger}$	745	Br-Br	192.5 7
С-Р	263	1-1	151.0

