MULTIPLE CHOICE (2 pts each): Write the letter corresponding to the correct answer on the line next to each question. The LETTER ASSOCIATED WITH THE CORRECT ANSWER <u>MUST BE</u> <u>WRITTEN ON THE LINE NEXT TO THE QUESTION</u> in order to receive full credit.

1) In which of the foll soluble?	In which of the following solutions would aspirin (acetyl salicylic acid) be most soluble?			1)
a) Pure water		b) A pH 7 buffer		
c) 0.05M NaOI	ł	d) 1.0M HCl		
2) In which of the following t	lowing solutions would	CuSO ₄ be most soluble?		2)
a) Pure water				
b) 1.0M solutio	b) 1.0M solution of NH ₃ K _f Cu(NH ₃) ₄ 2+ = 5.0×10^{13}			
c) 1.0M HCl d) 1.0M K ₂ SO ₂	1			
3) Which of the follow	wing salts would produc	e a basic solution in wate	er?	3)
a) NH ₄ Cl	b) NaNO ₃	c) KCH ₃ COO	d) FeBr ₂	
4) Which of the follow	wing is the strongest acid	d?		4)
a) HCl	b) NaOH	c) HF	d) HBr	
5) Which of the follow	wing choices would mak	te the most effective high	a capacity buffer	5)
with a pH close to	4.5? K _a values are 1.8x	10 ⁻⁵ (CH ₃ COOH) and 7	7.1x10 ⁻⁴ (HF).	
a) 1.4M CH ₃ COOH with 1.5M NaCH ₃ COO				
b) 1.4M HF wit	b) 1.4M HF with 1.5M NaF			
c) 0.05M CH ₃ COOH with 0.04M NaCH ₃ COO				
d) 0.05M HF w	ith 0.04M NaF			
6) How many equival) How many equivalence points would you expect for the titration of H ₂ CO ₃ ?			6)
a) 2	b) 3	c) 1	d) 0	
7) Which of the follow	wing combinations of so	lutions would form a pre	cipitate? K _{sp} of	7)
$PbF_2 = 4.1x10^{-8}$			Ĩ	
a) 50 mL of 0.3	M Pb(NO ₃) ₂ with 100	mL of 0.001M NaF		
b) 30 mL of 0.5	M Pb(NO ₃) ₂ with 70 m	L of 0.0002M NaF		
c) 200 mL of 0.	c) 200 mL of 0.04M Pb(NO ₃) ₂ with 10 mL of 0.01M NaF			
d) 20 mL of 0.0	$002M Pb(NO_3)_2$ with 20	mL of 0.002M NaF		
8) Which of the follow	wing cations would prod	uce the most acidic solu	tion?	8)
a) Fe^{3+}	b) Cr ³⁺	c) Ni ³⁺	d) Mn ³⁺	•)

SHORT ANSWER (14 pts each): Completely answer all of the following questions. Read all questions carefully!!! <u>Show all work.</u> Make sure to include units and report all mathematical answers to the correct number of significant figures. Write final answers in designated locations when indicated.

1) The K_{sp} value for lead chloride (PbCl ₂) is 2.4x10 ⁻⁴	
--	--

a.) What is the molar solubility of PbCl₂ in water? Answer a:

b.) What is the molar solubility of PbCl₂ in a 0.500 M solution of NaCl?

Answer b:_____

c.) What is the molar solubility of PbCl₂ in a 0.500 M solution of Pb(NO₃)₂?

Answer c:_____

2)	A 1.0L buffer solution is prepared containing 0.200M acetic acid ($K_a = 1.8 \times 10^{-5}$) and 0.250M
	sodium acetate.

	a.) What is pH of the buffer?	Answer a:	
	b.) What is the pH after adding 0.070 mol KOH?	Answer b:	
	c.) What is the pH after adding 0.040 mol HNO ₃ ?	Answer c:	
3)	 3) 50.0 mL of 0.620M HCl was titrated with 0.150M NaOH. a.) What was the pH of the acid solution before the titration began? Answer a: 		
	b.) What is the pH at the equivlance point?c.) Briefly explain how you arrived at your answer to part	Answer b:	
	Answer c:	d? Answer d:	

4) 100.0 mL of 0.25M NH ₃ ($K_b = 1.8 \times 10^{-5}$) was titrated	with 0.25M HCl.			
a.) What was the pH of the solution before the titration	tion began? Answer a:			
b.) What is pH after addition of 100.0mL HCl?	Answer b:			
c.) What controls the pH at the equivalence point?	Answer c:			
d.) Does your answer to part b support your answer to part c? Briefly explain.				
Answer d:				
5) You have a 0.67 M solution of NaC ₆ H ₅ COO. The K_a	of C ₆ H ₅ COOH is 6.5x10 ⁻⁵ .			
a.) Write a balanced chemical equation showing the reaction with water that causes this solution to have a non-neutral pH.				
Answer a:				
b.) Calculate the [OH-] concentration	Answer b:			
c.) Calculate the pH of this solution	Answer c:			

6) The K_{sp} value for copper bromide (CuBr) is 4.2×10^{-8} . K_f for Cu(CN)₄²⁻ is 5.0×10^{13} .

a.) What is the solubility of CuBr in water?

Answer a:

b.) What is the solubility of CuBr in a 1.5M solution of NaCN? Answer b:

c.) What is the K_c value for the formation of $Cu(CN)_4^{2-}$ from solid CuBr and aqueous NaCN?

Answer c:

IPLE CHOICE (2 pts each): Write the letter corresponding to the correct answer on the line next question. The LETTER ASSOCIATED WITH THE CORRECT ANSWER <u>MUST BE</u> WRITTEN ON THE LINE NEXT TO THE QUESTION in order to receive full credit.

	1) In which of the following solutions would aspirin (acetyl salicylic acid) be most soluble?				1) _	<u>C</u>
	a) Pure water (C)0.05M NaOH		b) A pH 7 buffer d) 1.0M HCl			
	 2) In which of the following a) Pure water b) 1.0M solution of N c) 1.0M HCl d) 1.0M K₂SO₄ 	solutions would CuS(H3 K _f Cu(NH3)42+ =	O4 be most soluble? = 5.0x1013		2) _	ß
	3) Which of the following s a) NH ₄ Cl	alts would produce a b b) NaNO3	asic solution in water?	d) FeBr ₂	3) _	C
	4) Which of the following isa) HCl	s the strongest acid? b) NaOH	c) HF	(d) HBr	4) _	D
	 5) Which of the following choices would make the most effective high capacity buffer 5) <u>A</u> with a pH close to 4.5? K_a values are 1.8x10⁻⁵ (CH₃COOH) and 7.1x10⁻⁴ (HF). (a) 1.4M CH₃COOH with 1.5M NaCH₃COO (b) 1.4M HF with 1.5M NaF (c) 0.05M CH₃COOH with 0.04M NaCH₃COO (d) 0.05M HF with 0.04M NaF 					<u>A</u>
	6) How many equivalence p	oints would you expected b) 3	ct for the titration of H	2CO ₃ ? d) 0	6) _	A
 7) Which of the following combinations of solutions would form a precipitate? K_{sp} of 7) PbF₂ = 4.1x10⁻⁸ (a) 50 mL of 0.3M Pb(NO₃)₂ with 100 mL of 0.001M NaF (b) 30 mL of 0.5M Pb(NO₃)₂ with 70 mL of 0.0002M NaF (c) 200 mL of 0.04M Pb(NO₃)₂ with 10 mL of 0.01M NaF (d) 20 mL of 0.002M Pb(NO₃)₂ with 20 mL of 0.002M NaF 					<u>A</u>	
	8) Which of the following c a) Fe ³⁺	ations would produce t b) Cr ³⁺	the most acidic solution	n? d) Mn ³⁺	8) _	C

1

SHORT ANSWER (14 pts each): Completely answer all of the following questions. Read all questions carefully!!! <u>Show all work.</u> Make sure to include units and report all mathematical answers to the correct number of significant figures. Write final answers in designated locations when indicated.

1) The K_{sp} value for lead chloride (PbCl₂) is 2.4x10⁻⁴

PbCIzco = Pb2+ + acl-

a.) What is the molar solubility of PbCl₂ in water?

Answer a: 3.9 × 10⁻² M

$$a.4 \times 10^{-4} = (x)(ax)^{a} \times x^{3} = 6.0 \times 10^{-6}$$

 $a.4 \times 10^{-4} = 4x^{3} \times x^{3} = 3.9/5 \times 10^{-2} M$

b.) What is the molar solubility of PbCl2 in a 0.500 M solution of NaCl?

$$a. 4 \times 10^{-4} = (x) (0.500)^{a}$$

 $a. 4 \times 10^{-4} = 0.35 \times 10^{-4}$
 $X = 9.6 \times 10^{-4}$ M

Answer c: 1,1 × 10⁻² M

c.) What is the molar solubility of PbCl₂ in a 0.500 M solution of Pb(NO₃)₂?

 $2.4 \times 10^{-4} = (0.500)(ax)^{2}$ $a.4 \times 10^{-4} = ax^{2}$ $X^{2} = 1.3 \times 10^{-4}$ $X = 1.095 \times 10^{-2}$

2) A 1.0L buffer solution is prepared containing 0.200M acetic acid ($K_a = 1.8 \times 10^{-5}$) and 0.250M sodium acetate.

a.) What is pH of the buffer? $p | t = 4.745 + log \left(\begin{array}{c} 0.250 \\ 0.200 \end{array} \right)$ p | t = 4.745 + 0.09691 = 4.8419b.) What is the pH after adding 0.070 mol KOH? Acid 0.200 mol = 0.070 mol = 0.13 mol / 1L Cons Base 0.250 mol + 0.070 mol = 0.32 mol / 1L $p | t = 4.745 + log \left(\begin{array}{c} 0.32M \\ 0.13M \end{array} \right) = 4.745 + 0.3912 = 5.1362$ c.) What is the pH after adding 0.040 mol HNO3? Acid 0.200 mol + 0.040 mol = 0.240 mol / 1L

CHM 112 2019S A

3) 50.0 mL of 0.620M HCl was titrated with 0.150M NaOH.

a.) What was the pH of the acid solution before the titration began? Answer a: 0.208

b.) What is the pH at the equivlance point?

Answer b: 7.0

1

0.290

c.) Briefly explain how you arrived at your answer to part b.

Answer c: All acid neutralized, no excess base, strong so no equilibrium

d.) What is the pH after 20.0 mL of NaOH has been added?

$$0.150 \text{ mol}_{L} \times 0.02 \text{ L} = 0.0025 \text{ mol} \text{ base Answerd:} 0.010 \text{ C} = 0.010 \text{ mol}_{L} \times 0.021 \text{ mol} \text{ acid} - \log (0.400) = 0.3904 \text{ mol}_{L} \times 0.025 \text{ mol} \text{ acid} \text{ remaining} = 0.031 \text{ mol} \text{ acid} \text{ remaining} = 0.031 \text{ mol}_{L} = 0.400 \text{ m} \text{ Hcl} = 0.400 \text{ m} \text{ m$$

4) 100.0 mL of 0.25M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.25M HCl.

a.) What was the pH of the solution before the titration began?
1.8 × 10⁻⁵ =
$$\frac{x^2}{0.25}$$
 pOlt= -log(0.00212) = 2.607 Answer a: 11.33
×2=4.5×10⁻⁶ pH=14-2.67 = 11.33
= $L0H-3$
b.) What is pH after addition of 100.0mL HCl? Answer b: 5.08
equivalence pot
0.25mol Hcl × 0.1L = 0.025mol Hcl (1mol NHu⁺) = 0.025mol NHu⁺ produced
0.2L = 0.125M NHu⁺
 $K_{0.2} = \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}$ 5.56 × 10⁻¹⁰ = $\frac{x^2}{0.125}$
c.) What controls the pH at the equivalence point? PH=-10g(8.33×10⁻⁶) = 5.67935
Answer c: Concentration of the Conjugate (acid in this case)

d.) Does your answer to part b support your answer to part c? Briefly explain.

Answerd: Yes - the pH is acidic due to the presence of an acid

5) You have a 0.67 M solution of NaC₆H₅COO. The K_a of C₆H₅COOH is 6.5x10⁻⁵. $K_{0} = \frac{1 \times 10^{-14}}{(0.5 \times 10^{-5})^{-5}} = 1.54 \times 10^{-10}$ a.) Write a balanced chemical equation showing the reaction with water that causes this solution to have a non-neutral pH.

b.) Calculate the [OH-] concentration

1.54×10-10 = X2 X = 1.03 × 10-10 X= 1.0153×10-5

c.) Calculate the pH of this solution

$$COH-J = 1.0153 \times 10^{-5}$$

 $POH = -log(1.0153 \times 10^{-5}) = 4.993$
 $PIH = 14 - 4.993 = 9.0006$

Answer b: 1.0 X10-5 M

Answer c: $9_{2}O$

6) The K_{sp} value for copper bromide (CuBr) is 4.2×10^{-8} . K_f for Cu(CN)₄²⁻ is 5.0×10^{13} .

a.) What is the solubility of CuBr in water? Answer a: $2.05 \times 10^{-4} M$ CuBr (s) = Cut (ag) + Br (ag) 4,2×10-8=(x)(x) X= 2,05×10-4 b.) What is the solubility of CuBr in a 1.5M solution of NaCN? Answer b: 3300 M CuBrcs) + 4CN⁻ \Rightarrow Cu(CN)y²⁻ + Br 1.5M 0 2.1 × 10⁶ = $\frac{(x)(x)}{(1.5)^4}$ $\frac{-4x}{1.5-4x}$ $\frac{+x}{x}$ $\frac{+x}{x}$ $2.1 \times 10^6 = \frac{(x)(x)}{(1.5)^4}$ Keg = Ksp × Kg = (4.2 × 10⁻⁸) (5.0 × 10¹³) = 2.1 × 10⁶ × 2=1.063 × 10⁷ c.) What is the K_c value for the formation of Cu(CN)4²⁻ from solid CuBr and aqueous NaCN? Ko = Kan x Kr Answer c: R. LKIO

4