MULTIPLE CHOICE (2 pts each): Write the letter corresponding to the correct answer on the line next to each question. The LETTER ASSOCIATED WITH THE CORRECT ANSWER <u>MUST BE</u> WRITTEN ON THE LINE NEXT TO THE QUESTION in order to receive full credit.

a) CH ₃ CH ₂ NH ₂ c) Fe(OH) ₃		b) NH ₃		
c) Fe(OH) ₃				
		d) KOH		
 2) Which of the followin (1) concentration of r (2) rate of the forward a) Both statement b) Statement 2 c) Statement 1 	ng statements about eq eactants and products a d and reverse reactions 1 and Statement 2	uallibrium is (are) true? are equal s are equal		2)
 3) If the K_{eq} value for a a) all products, no b) the same conce c) more products d) more reactants 	reaction is 5.77x10 ⁻⁴ , reactants entration of products & than reactants than products	, at equilibrium you wou reactants	d have	3)
4) You test a clear liquid a) acidic	l, and it has a pH of 11 b) basic	.4. The liquid is c) nonaqueous	d) neutral	4)
5) How many K_a values	would phosphoric aci	d (H3PO4) have?		5)
a) 1	b) 4	c) 2	d) 3	
6) A reaction was studie value for the reverse	ed and found to have a large reaction?	K_c value of 3.95×10^{-3} .	What is the K _c	6)
a) 2.53x10 ²	b) 3.95x10 ³	c) 6.28x10 ⁻²	d) 1.56x10-5	
7) Which of the followin	ng is a weak acid?	b) perchloric acid		7)

a) 45°C b) 25°C c) 0°C d) 1000°C

SHORT ANSWER (14 pts each): Completely answer all of the following questions. Read all questions carefully!!! <u>Show all work.</u> Make sure to include units and report all mathematical answers to the correct number of significant figures. Write final answers in designated locations when indicated.

At 25°C, BrCl will dissociate into Br₂ and Cl₂ according to the following reaction, which has a K_c value of 0.45. You have placed 5.50x10⁻² mol of BrCl into a 250.0 mL container.

 $2 \operatorname{BrCl}(g) \rightleftharpoons \operatorname{Cl}_2(g) + \operatorname{Br}_2(g)$

(a) Write the equilibrium expression for this reaction.

(b) What are the initial concentrations of the three gases?	BrCl:
	Cl ₂ :
	Br ₂ :
(c) What are the equilibrium concentrations of the three gases?	BrCl:
	Cl ₂ :
	Br ₂ :

- 2) Suppose there was a gas phse reaction 3A(g) + 2B(g) ⇒ 2C(g). Gases A and B were mixed in a 1.00L flask at 256K and allowed to reach equilibrium. At equilibrium, the flask contained: A: 2.5x10⁻² moles; B: 3.8x10⁻²moles; and C: 1.6x10⁻³moles.
 - (a) Write the equilibrium expression for this reaction.
- (b) What is the value of K_c for this reaction?
 - (c) What is the value of K_p for this reaction?

Кр:_____

K_c:_____

(d) What is the % ionization? An	nswer d:
 4) A solution of the weak base ethylamine (C₂H₅NH₂) was made of water. The K_b value for this base is 5.6x10⁻⁴. a.) What is the formula of the conjuagate acid? 	de by dissolving 0.140 moles in 1.00L Answer a:
b.) What is the equilibrium concentration of hydroxide ions?	Answer b:
c.) What is the pOH?	Answer c:
d.) What is the pH?	Answer d:
2 2019S B	3

Answer b:_____ (b) What is the hydronium ion concentration?

(c) What is the molarity of the solution?

(a) What is the formula of the conjuate base of this acid? Answer a:

Answer c:

3) A solution of the weak acid acetic acid (CH₃COOH) in water has a pH of 3.84. $K_a = 1.8 \times 10^{-5}$

5) Which way will the equilibrium of the following reaction shift (toward reactants or toward products) in response to each of the following stresses? $\triangle H = 155.5 \text{kJ}$ $3\text{NO}(g) \rightleftharpoons \text{N}_2\text{O}(g) + \text{NO}_2(g)$

a.) The volume of the reaction vessel is increased	Answer a:
b.) Heat is added	Answer b:
c.) $N_2O(g)$ is added to the flask	Answer c:
d.) $NO_2(g)$ is removed from the flask	Answer d:
e.) A catalyst is added to the reaction	Answer e:
f.) NO(g) is added to the flask	Answer f:
g.) Suggest a way to increase the yield of this reaction.	
Answer g:	
6) a.) What is the conjugate base of $H_2PO_4^-$?	Answer a:
b.) What is the pH when 0.258 mol of HCl (a strong ac	id) is dissolved in 1.00L of water?
	Answer b:
c.) What is the conjugate acid of HCO ₃ -?	Answer c:
d.) If the hydronium ion concentration in a given soluti concentration?	on is 2.8×10^{-7} M, what is the hydroxide ion
	Answer d:
e.) Is the solution in part d acidic or basic?	Answer e:
f.) What is the K _b of aspirin ($K_a = 3.0 \times 10^{-4}$)?	Answer f:
g.) What is the pK _a of aspirin?	Answer g:

MULTIPLE CHOICE (2 pts each): Write the letter corresponding to the correct answer on the to each question. The LETTER ASSOCIATED WITH THE CORRECT ANSWER MUST BE					line next	
WRIT	TEN ON THE LINE N	EXT TO THE OUES	FION in order to receiv	ve full credit.		
	1) Which of the following	ng is a strong base?			1) D	
	a) CH ₃ CH ₂ NH ₂	0 0	b) NH3			
	c) Fe(OH)3		(d)KOH			
			0			
	2) Which of the following	ng statements about eq	uallibrium is (are) true?		2) B	
	(1) concentration of r	eactants and products	are equal		á <u>— I — I</u>	
	(2) rate of the forwar	d and reverse reactions	are equal			
	a) Both statement	1 and Statement 2				
	(b)Statement 2		(4)			
	c) Statement 1	~				
					2	
	3) If the K_{eq} value for a	reaction is 5.77x10 ⁻⁴	, at equilibrium you wou	ld have	3) _D	
	a) all products, no	reactants				
	b) the same conce	entration of products &	reactants			
	c) more products	than reactants				
	(D)more reactants	than products				
		than products				
	4) You test a clear liquid	d. and it has a pH of 11	.4. The liquid is		4) B	
	a) acidic	(b))basic	c) nonaqueous	d) neutral		
	,	0	2 I	,		
	5) How many K _a values	s would phosphoric aci	id (H3PO4) have?		5) _D_	
	a) 1	b) 4	c) 2	(d))3		
				0		
	6) A reaction was studie	ed and found to have a	K _c value of 3.95×10^{-3} .	What is the K _c	6) A	
	value for the reverse	reaction?	Ŭ	C		
	(a) 2 53x102	b) 3.95×10^3	c) 6.28×10^{-2}	d) 1 56x10-5		
	()	0) 0000000	•) 0.20110	u) 110 01110		
	7) Which of the followi	ng is a weak acid?			7) A	
	a acetic acid	0	b) perchloric acid			
	c) nitric acid		d) sulfuric acid			
	-)		u) suituite ustu			
	8) The K _m values for th	e reaction $A(\sigma) + B(\sigma)$	\rightarrow C(g) are 3.71x10-8	ot 0°C 2 74x10-4 at	8) B	
	o) momp (mass for m		(G) uto 5.71k10 (a o c, 2.7 mio a	•)	
	25°C and 4.5x10 ⁻⁰ a	t 45°C. If you want to	maximize the yield of C	2, it is best to run the		
	a) 45°C	(b) 25°C	c) 0°C	d) 1000°C		
	u) 15 C	0250		u) 1000 C		

C.L.

1

SHORT ANSWER (14 pts each): Completely answer all of the following questions. Read all questions carefully!!! Show all work. Make sure to include units and report all mathematical answers to the correct number of significant figures. Write final answers in designated locations when indicated.

1) At 25°C, BrCl will dissociate into Br2 and Cl2 according to the following reaction, which has a Kc value of 0.45. You have placed 5.50x10⁻² mol of BrCl into a 250.0 mL container.

$$2 \operatorname{BrCl}(g) \rightleftharpoons \operatorname{Cl}_2(g) + \operatorname{Br}_2(g)$$

(a) Write the equilibrium expression for this reaction.

$$K_{eq} = \frac{CCl_2][Br_2]}{[Brc1]^2}$$

(b) What are the initial concentrations of the three gases?

~	0.11	
$Cl_2:$	OM	
	Q	
Br ₂ :	OM	

 $K_{c}: 1.13 \times 10^{2}$

(c) What are the equilibrium concentrations of the three gases?	BrCl: 0.094 M
$ABrcl \Rightarrow Cl_2 + Br_2$ I O. DAM O O $\sqrt{D/16} - [X][X]$	Cl2: 0.063M
$\frac{C}{E} \frac{-2X}{E} \frac{+X}{X} \frac$	Br2: 0.063M
$0.6708a = \frac{X}{0.22 - 2X} = \frac{0.14758 = 2.34164X}{2.34164} = 0.$	22-2(0.043) = 0.094M
0.14758 - 1.34164 x = \times X = 0.0630 2) Suppose there was a gas phase reaction 3A(g) + 2B(g) \Rightarrow 2C(g)	g). Gases A and B were mixed in a

1.00L flask at 256K and allowed to reach equilibrium. At equilibrium, the flask contained:

A:
$$2.5 \times 10^{-2}$$
 moles; B: 3.8×10^{-2} moles; and C: 1.6×10^{-3} moles

(a) Write the equilibrium expression for this reaction.

$$Keq = \frac{\left[C\right]^{2}}{\left[A\right]^{3}\left[B\right]^{2}}$$

(b) What is the value of K_c for this reaction?

$$K_{eq} = \frac{\left[1.6 \times 10^{-3} \text{ M}\right]^2}{\left[2.5 \times 10^{-2} \text{ M}\right]^3 \left[3.8 \times 10^{-2} \text{ M}\right]^2} = \frac{2.56 \times 10^{-6}}{\left[1.5625 \times 10^{-5}\right] \left[1.444 \times 10^{-5}\right]} = \frac{2.56 \times 10^{-6}}{2.25625 \times 10^{-8}} = \frac{1.1346 \times 10^{-2}}{2.25625 \times 10^{-8}}$$
(c) What is the value of K_p for this reaction? K_p: 1.22×10^{-2}

(c) What is the value of K_p for this reaction?

$$K_p = K_c \cdot (RT)^{2n} = (1.1346 \times 10^2) (0.0821 \cdot 256 K)^{-2}$$

= 1.222 × 10^{-2}

CHM 112 2019S B

- 3) A solution of the weak acid acetic acid (CH₃COOH) in water has a pH of 3.84. $K_a = 1.8 \times 10^{-5}$
 - (a) What is the formula of the conjuate base of this acid? Answer a: CH_3COO^-
 - (b) What is the hydronium ion concentration?

- (c) What is the molarity of the solution?
- HA A- H₃O+ I Y = 0 = 0 $\frac{C -x + x + x}{E - x - x - x - x - x - 1.45 \times 10^{-4}}$ (d) What is the % ionization?
 - ENAZ X100=1.45×10-4 INAZ X100=1.45×10-4 INAZ X10-3 × 100 = 11.6684%

Answer b: 1.4×10-4 M

Answer c:
$$1.3 \times 10^{-5}$$
 M
 $1.8 \times 10^{-5} = \frac{1.45 \times 10^{-9}}{1.45 \times 10^{-9}}$
 $1.8 \times 10^{-5} - 2.61 \times 10^{-9} = 2.1025 \times 10^{-8}$
 $1.8 \times 10^{-5} - 2.61 \times 10^{-9} = 2.1025 \times 10^{-8}$
 $1.8 \times 10^{-5} - 2.3635 \times 10^{-8}$
 $1.8 \times 10^{-5} - 2.3635 \times 10^{-8}$
Answer d: 11^{-9}

- 4) A solution of the weak base ethylamine (C₂H₅NH₂) was made by dissolving 0.140 moles in 1.00L of water. The K_b value for this base is 5.6×10^{-4} .
 - a.) What is the formula of the conjuagate acid?

Answer a: $C_{a}H_{5}NH_{3}^{+}$

d.) What is the pH?

Answer d: ______

14-2.05=11.95

5) Which way will the equilibrium of the following reaction shift (toward reactants or toward products) in response to each of the following stresses? △H = 155.5kJ 3NO(g) ≈ N₂O(g) + NO₂(g)

a.) The volume of the reaction vessel is increased	Answer a: reactants
b.) Heat is added	Answer b: products
c.) $N_2O(g)$ is added to the flask	Answer c: reactants
d.) $NO_2(g)$ is removed from the flask	Answerd: products
e.) A catalyst is added to the reaction	Answer e: <u>No Change</u>
f.) NO(g) is added to the flask	Answer f: <u>products</u>
g.) Suggest a way to increase the yield of this reaction.	
Answerg: Remove a product, addmore rea	ctant, decrease size of flack
fire terres presservice, fire terres	
6) a.) What is the conjugate base of $H_2PO_4^-$?	Answer a: HPO4 ²⁻
b.) What is the pH when 0.258 mol of HCl (a strong acid) is di	issolved in 1.00L of water?
complete dissociation - log(0.258)= 0.	Answer b: 0.588 ちをお
c.) What is the conjugate acid of HCO ₃ -?	Answer c: $H_a CO_3$
d.) If the hydronium ion concentration in a given solution is 2.	8×10^{-7} M, what is the hydroxide ion
$\int OH^{-1} = \frac{1 \times 10^{-14}}{21 \times 10^{-14}} = \frac{1 \times 10^{-14}}{20 \times 10^{-14}}$	Answerd: 3.6×10-8
e.) Is the solution in part d acidic or basic?	Answer e: $0.0101C$
-log(2,8×10-7) = 6.55 = acidic	
f.) What is the K _b of aspirin ($K_a = 3.0 \times 10^{-4}$)?	Answer f: 3.3×10^{-11}
$K_{b} = \frac{1 \times 10^{-14}}{K_{a}} = \frac{1 \times 10^{-14}}{3.0 \times 10^{-4}} = 3.33 \times 10^{-11}$	
g.) What is the pK _a of aspirin?	Answer g: 3.52
$-\log(k_a) = -\log(3.0\times10^{-4}) = 3.523$	

×

4