Cell Potential & Redox

For a reduction half-rxn:

- The more positive the value of E°, the easier it is to reduce the reactant

 the reactant is a stronger oxidizing agent
- The more negative the value of E°, the easier it is to oxidize the reactant

 the reactant is a stronger reducing agent

Cell Potential & Redox

1.) Which of the following pairs of substances is the stronger reducing agent? A: (a) Mg(s) (b) Cr(s)

(a) Fe(s) or Mg(s)(b) Cr(s) or Co(s)

We have already seen the connection between cell potential and spontaneity:

 $E^{\circ} = E_{cathode} - E_{anode}$ $E^{\circ} = E_{red} - E_{ox}$

E > 0 = spontaneous **E** < 0 = nonspontaneous

There must also be a relationship between Gibbs Free Energy and cell potential. Since the movement of electrons allows work to be done by the cell, Δ G for a redox reaction can be found from the equation:

$\Delta G = -nFE$

n = number of moles of electrons transferred
 F = Faraday's constant (amount of electrical charge on 1 mole of electrons; 1F = 96,485C/mol = 96,485J/V-mol)
 E = cell potential

Since n & F are positive, if E > 0, then $\Delta G < 0$ – spontaneous!

Since $\Delta G^{\circ} = -RTInK$, and under standard conditions $\Delta G^{\circ} = -nFE^{\circ}$, then

 $-RTInK = -nFE^{\circ}$

 $E^{\circ} = (RT/nF) InK$

For a Redox Reaction, Free Energy, Cell Potential, and the Equilibrium constant are all related!

Table 19.2Relationships Among ΔG° , K, and E°_{cell}			
ΔG°	κ	E [°] cell	Reaction Under Standard-State Conditions
Negative	>1	Positive	Favors formation of products.
0	= 1	0	Reactants and products are equally favored.
Positive	<1	Negative	Favors formation of reactants.

1.What is the equilibrium constant at 25°C for the reaction: $Sn(s) + 2Cu^{2+}(aq) \longrightarrow Sn^{2+}(aq) + 2Cu^{+}(aq)?$

2.) If the equilibrium constant for a two electron redox reaction at 298K is 1.5×10^{-4} , calculate the corresponding ΔG° and E°_{red} .

Cell Potentials at Nonstandard Conditions: The Nernst Equation

Free Energy at nonstandard conditions: $\Delta G = \Delta G^{\circ} + RTInQ$ Since $\Delta G = -nFE$, $\Delta G^{\circ} = -nFE^{\circ}$ Therefore: $-nFE = -nFE^{\circ} + RTInO$ Dividing by –nF gives the Nernst equation: $E = E_{cell}^{\circ} - (RT/nF)InQ$

The Nernst can be used to evaluate the cell potential of systems that are not at 25°C and/or do not contain 1M solutions

The Nernst Equation

A voltaic cell utilizes the following reaction:
 2Al(s) + 3I₂(s) → 2Al³⁺(aq) + 6l⁻(aq)
 (a) What is the E_{cell} under standard conditions?
 (b) What is the E_{cell} when [Al³⁺] = 4.0x10⁻³M & [l⁻] = 0.010M (still at 298K)

Concentration Cells

Cells where the cell potential is generated entirely by a difference in concentration at the two electrodes (the ions present at the cathode and anode are the same)

Concentration Cells

How are concentration cells possible?

For the voltage producing cell in the previous slide, the two concentrations of Ni^{2+} were 1.00M and 1.00×10^{-3} M.

Diffusion occurs naturally from high concentration to low concentration, so the process ("reaction") is:

 $Ni^{2+}(1.00M) \rightarrow Ni^{2+}(1.00\times10^{-3}M)$

Using the Nernst equation:

 $E = E^{\circ} - \frac{(8.314 \text{J/molK})(298 \text{K})}{(2)(96,485 \text{J/V-mol})} \ln \frac{[1.00 \times 10^{-3}]}{[1.00]}$

 $E = 0V - [0.01284V \times (-6.908)] = 0.0887V$

The voltage generated in this manner has physiological importance in systems such as the potassium ion system that controls nerve impulses. 39

Concentration Cells

 A concentration cell is constructed at 298K with two Zn(s)-Zn²⁺(aq) half cells. One half-cell has a Zn²⁺ concentration of 1.35M, and the other has a Zn²⁺ concentration of 3.75x10⁻⁴M. What is the cell potential?