Chapter 17

Acid - Base Equilibria & Solubility Equilibria

Buffer Solutions (Buffers)

Solutions that resist changes in pH when small amounts of acid or base are added

- Must contain a weak acid or base and
- The conjugate (salt) of the weak acid or base
- i.e. Contain a weak conjugate acid/base pair
- pH is controlled by equilibrium $[K_a \text{ (or } K_b)]$ $HA + H_2O \longrightarrow H_3O^+ + A^-$

When small amounts of a strong acid or base are added:

Acidic species in buffer neutralizes added OH⁻

$$HA + OH^{-} \longleftrightarrow H_{2}O + A^{-}$$

• Basic species in buffer neutralizes added H⁺

$$A^{-} + H_3O^{+} \longrightarrow H_2O + HA$$

How Buffers Work - Le Châtelier's Principle

- Add OH-, reduce H+, shift equilibrium toward conj. Base
 - OH⁻ will react with H⁺ to form water
- Add H+, shift equilibrium toward undissociated acid

Henderson-Hasselbalch Equation

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

Comes from the equilibrium expression for: $HA \longrightarrow H^+ + A^-$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$
 \longrightarrow $K_a = [H^+]\frac{[A^-]}{[HA]}$

Take the -log of both sides:

e -log of both sides:

$$-log K_a = -log [H^+] + -log \frac{[A^-]}{[HA]}$$
acid
$$pK_a$$

$$pH$$
For bases:

Therefore:

$$pK_a = pH + -log \frac{[A^-]}{[HA]}$$

For bases: $pOH = pK_b + -log \frac{[BH^+]}{[B]}$

Rearrange to get Henderson-Hasselbalch

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$

Ice Table Method

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$

H-H equation method:

Using the Henderson-Hasselbalch Equation

2. How many grams of sodium lactate (CH₃CH(OH)COONa) should be added to 1.0L of a 0.150M lactic acid (CH₃CH(OH)COOH) to form a buffer solution with pH=4.00? $K_a = 1.4 \times 10^{-4}$; molar mass of sodium lactate = 112.1g/mol