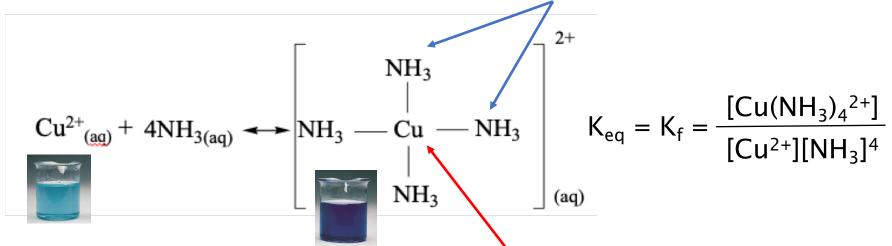
Effect of pH

If the Compound Contains a(n):


- Basic Anion: More soluble in acidic solution Mg(OH)₂(s) Mg²⁺(aq) + 2OH⁻(aq)
 In acidic solution: OH⁻(aq) + H₃O⁺(aq) 2H₂O(I)
 OH⁻ removed from solution, dissolution equilibrium shifts toward more dissolved product
- Acidic Cation: More soluble in basic solution
 C₇H₇OCOOH(s) ↔ C₇H₇OCOO⁻(aq) + H₃O⁺(aq)
 In basic solution: OH⁻(aq) + H₃O⁺(aq) ↔ 2H₂O(l)
 H₃O⁺ removed from solution, dissolution equilibrium
 shifts toward more dissolved product

Effect of pH Calculations

Calculate the solubility of Mg(OH)₂ (one of the ingredients in the antacid Maalox) in grams per liter when buffered at pH: (a) 12.50; (b) 7.00 A: a.) 7.01×10^{-7} g/L; b.) 7.00×10^{4} g/L K_{sp} of Mg(OH)₂ = 1.2 x 10^{-11} ; MM Mg(OH)₂ = 58.32 g/mol

Complex Ion Formation

Complex Ion: A central metal ion surrounded by other groups (molecules or ions) called **ligands**.

The metal center (Cu) is a Lewis Acid that accepts electron pairs from the ligands (NH₃), which act as Lewis Bases by donating electron pairs.

Formation of a complex ion is a reversible equilibrium reaction with its own equilibrium constant, K_f . $K_f = formation constant$

Common Complex Ion Ligands: NH₃, CN⁻, OH⁻, Br⁻, I⁻

K_f Values for Selected Complex Ions

TABLE 17.4	Formation Constants of Selected Complex Ions in Water at 25°C	
Complex Ion	Equilibrium Expression	Formation Constant (K _f)
$Ag(NH_3)_2^+$	$Ag^+ + 2NH_3 \implies Ag(NH_3)_2^+$	1.5×10^{7}
$Ag(CN)_2^-$	$Ag^+ + 2CN^- \Longrightarrow Ag(CN)_2^-$	$1.0 imes 10^{21}$
$Cu(CN)_4^{2-}$	$Cu^{2+} + 4CN^{-} \Longrightarrow Cu(CN)_4^{2-}$	$1.0 imes 10^{25}$
$Cu(NH_3)_4^{2+}$	$Cu^{2+} + 4NH_3 \Longrightarrow Cu(NH_3)_4^{2+}$	$5.0 imes 10^{13}$
$Cd(CN)_4^{2-}$	$Cd^{2+} + 4CN^{-} \Longrightarrow Cd(CN)_4^{2-}$	7.1×10^{16}
CdI_4^{2-}	$Cd^{2+} + 4I^- \implies CdI_4^{2-}$	$2.0 imes 10^{6}$
$HgCl_4^{2-}$	$Hg^{2+} + 4Cl^{-} \Longrightarrow HgCl_4^{2-}$	1.7×10^{16}
HgI_4^{2-}	$Hg^{2+} + 4I^- \implies HgI_4^{2-}$	$2.0 imes 10^{30}$
$Hg(CN)_4^{2-}$	$Hg^{2+} + 4CN^{-} \Longrightarrow Hg(CN)_4^{2-}$	$2.5 imes 10^{41}$
Co(NH ₃) ₆ ³⁺	$Co^{3+} + 6NH_3 \Longrightarrow Co(NH_3)_6^{3+}$	$5.0 imes 10^{31}$
$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4NH_3 \Longrightarrow Zn(NH_3)_4^{2+}$	2.9×10^{9}

Complex Ion Formation & Solubility

Formation of a Complex Ion can increase solubility

$$AgCI(s) \iff Ag^{+}(aq) + CI^{-}(aq) \qquad K_{sp}$$

$$Ag^{+}(aq) + 2NH_{3}(aq) \iff Ag(NH_{3})_{2}^{+}(aq) \qquad K_{f}$$

 $AgCI(s) + 2NH_3(aq) \implies Ag(NH_3)_2^+(aq) + CI^-(aq) K_c$

- Ag⁺ is removed from solution, shifting solubility equilibrium to the dissociated products
- More AgCl(s) dissolves
- K_{sp} governs first process
- K_f governs second process
- Two processes are added together
- K_c (overall equilibrium expression) = $K_{sp} \times K_f$

Complex Ion Formation & Solubility

1. Determine the equilibrium constant for the reaction: $Agl(s) + 2CN^{-}(aq) \iff Ag(CN)_{2}^{-}(aq) + I^{-}(aq)$ $K_{sp} Agl = 8.3 \times 10^{-17}; K_{f} Ag(CN)_{2}^{-} = 1 \times 10^{21}$

Complex Ion Formation & Solubility

2. Calculate the molar solubility of zinc carbonate at 25°C in (a) pure water and (b) 1.0M NH₃ A: (a) 3.7×10^{-6} (b) 7.6×10^{-2}

Whether or not a precipitate will form depends on concentration.

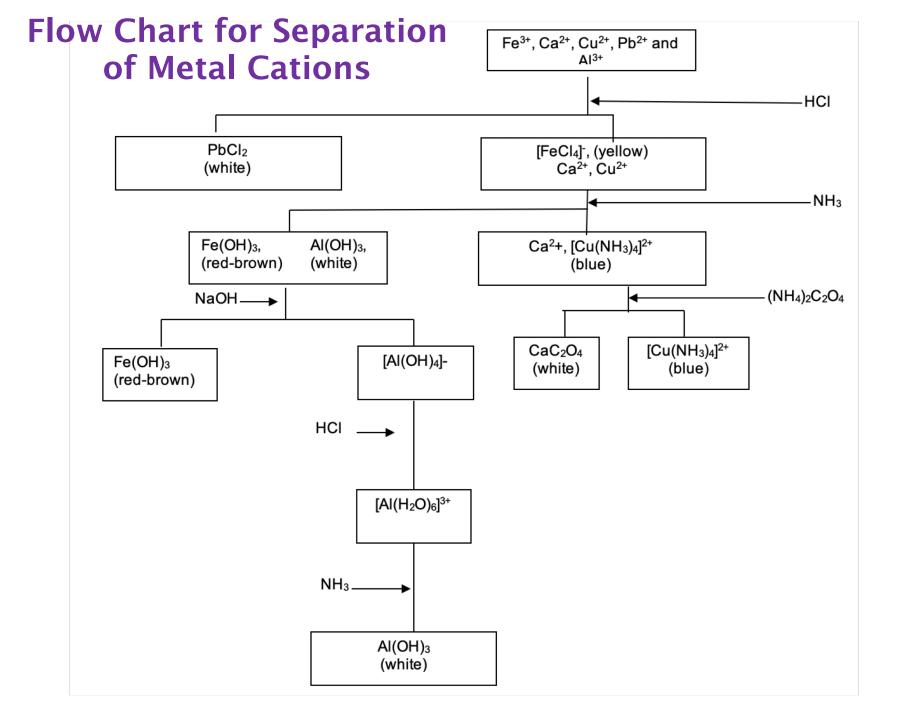
Can use Q_c values to predict precipitate formation

Calculate Q_c based on given concentrations & compare Q_c to K_{sp}

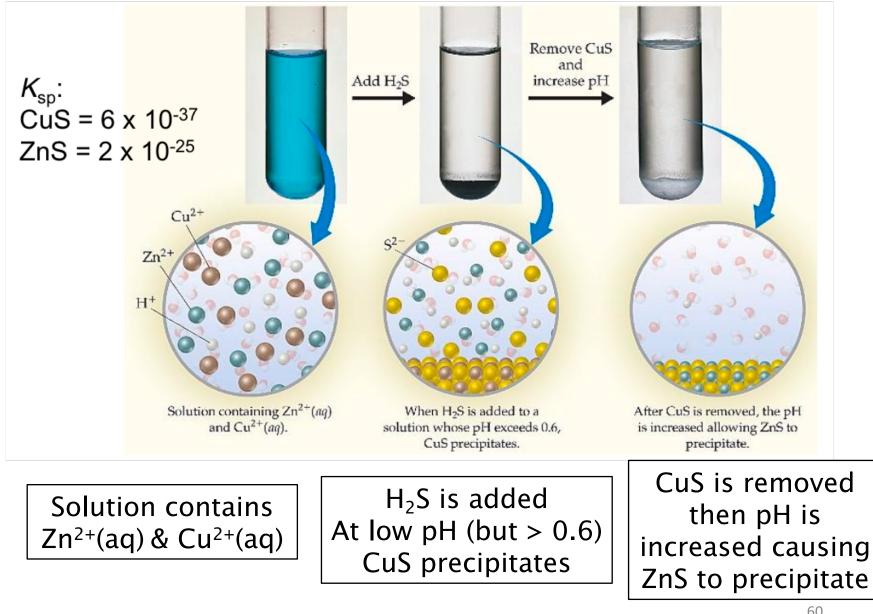
- $Q_c > K_{sp}$ Concentration too high \rightarrow Precipitate will form
- $Q_c < K_{sp}$ Concentration low \rightarrow all ions remain in solution
- $Q_c = K_{sp}$ At Equilibrium \rightarrow saturated solution

1.) If 2.00mL of 0.200M NaOH are added to 1.00L of 0.100M CaCl₂, will a precipitate form? A: no precipitate will form

2.) How many grams of solid K_2SO_4 (174.3g/mol) would need to be added to 50.0mL of a 0.0010M Ca(NO₃)₂ solution in order to (a) start precipitation and (b) precipitate 99% of the calcium?


2.) How many grams of solid K_2SO_4 (174.3g/mol) would need to be added to 50.0mL of a 0.0010M Ca(NO₃)₂ solution in order to (a) start precipitation and (b) precipitate 99% of the calcium?

Qualitative Analysis of Metal Ions


Ways to determine which ions are present in solution

- Selective precipitation
 - One compound has very low K_{sp} and will form a precipitate
 - Other compounds have very high (or no) K_{sp}
- Complex formation
 - Ligands will only form complex with one ion present
 - May cause a precipitate to dissolve
- Flame tests
 - Color of flame can be used for ID
 - CHM 101 energy levels!

Selective Precipitation

Selective Precipitation

A solution contains 0.050M Mg²⁺ and 0.020M Cu²⁺. Solid NaOH is added to the solution. K_{sp} Mg(OH)₂ = 1.8x10⁻¹¹; K_{sp} Cu(OH)₂ = 4.8x10⁻²⁰

(a) Which ion will precipitate first? A: Cu²⁺

(b) What concentration of OH⁻ is necessary to begin precipitation of each cation. A: Cu²⁺ needs 1.5x10⁻⁹M Mg²⁺ needs 1.9x10⁻⁵M