Solubility Equilibria

Aqueous Salt Solutions & Solubility

CHM 101

- Ionic compounds were considered soluble or insoluble
- Soluble compounds dissociated fully in water
- Basic stoichiometry rules were used

CHM 112

- Most ionic compounds are "slightly" soluble they do dissolve a little, but not very much
- A small amount of dissolved & dissociated material is present with the bulk undissolved
- Ions are constantly moving between the dissolved and undissolved states – EQUILIBRIUM!
- Solubility constant is K_{sp} (solubility product constant)
- Discussed in terms of Molar Solubility –
 moles solute/ 1L saturated solution

CHM 101 Solubility Rules for ions

Soluble	Ammonium (NH ₄ +) Hydrogen (H+) Alkali metals (grou Nitrate (NO ₃ ⁻) Perchlorate (ClO ₄ ⁻) Acetate (CH ₃ COO ⁻)	up 1A) Always soluble	
Usually Soluble	Halides (F ⁻ ,Cl ⁻ ,Br ⁻ ,& I ⁻ Sulfate (SO ₄ ²⁻)	 Exceptions (insoluble if w Pb²⁺, Hg₂²⁺, Ag⁺ Pb²⁺, Hg₂²⁺, Ag⁺, Ba²⁺, Ca²⁻ 	/ith): ⁺ , Sr ²+
Sparingly Soluble (Insoluble)	Sulfide (S ²⁻) Hydroxide (OH ⁻) Oxide (O ²⁻) Carbonate (CO ₃ ²⁻) Phosphate (PO ₄ ³⁻)	Exceptions: soluble if with any of the cations listed in the always soluble box	

Solubility Product Constant (K_{sp})

A slightly soluble ionic material is placed in water.

- The solubility is low so most will not dissolve
- What does dissolve will dissociate into ions

 $PbCl_2$ (s) $\implies Pb^{2+}(aq) + 2Cl^{-}(aq)$

- The solid is in equilibrium with the dissolved ions
- The equilibrium expression is:

 $K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$

 Note that the PbCl₂(s) is not included in the equilibrium expression. Why?

Solubility Product Constant (K_{sp})

- K_{sp} is an approximation used to estimate solubility
- Measures the extent to which a substance will dissolve in water
- Larger K_{sp} = higher solubility

Lead(II) chloride (PbCl₂)

- Amount of solid material present does not alter K_{sp}
 - Solids are not included in equilibrium expressions!

Compound	$K_{ m sp}$	Compound	K_{sp}
Aluminum hydroxide [Al(OH) ₃]	1.8×10^{-33}	Lead(II) chromate (PbCrO ₄)	2.0×10^{-14}
Barium carbonate (BaCO ₃)	8.1×10^{-9}	Lead(II) fluoride (PbF ₂)	4.1×10^{-8}
Barium fluoride (BaF2)	1.7×10^{-6}	Lead(II) iodide (PbI ₂)	1.4×10^{-8}
Barium sulfate (BaSO ₄)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide (Bi ₂ S ₃)	1.6×10^{-72}	Magnesium carbonate (MgCO ₃)	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [Mg(OH) ₂]	1.2×10^{-11}
Calcium carbonate (CaCO ₃)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF ₂)	4.0×10^{-11}	Mercury(I) chloride (Hg ₂ Cl ₂)	3.5×10^{-18}
Calcium hydroxide [Ca(OH) ₂]	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate [Ca3(PO4)2]	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide [Cr(OH)3]	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate (Ag ₂ CO ₃)	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-17}
Copper(II) hydroxide [Cu(OH)2]	2.2×10^{-20}	Silver sulfate (Ag ₂ SO ₄)	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide (Ag ₂ S)	6.0×10^{-51}
Iron(II) hydroxide [Fe(OH) ₂]	1.6×10^{-14}	Strontium carbonate (SrCO ₃)	1.6×10^{-9}
Iron(III) hydroxide [Fe(OH)3]	1.1×10^{-36}	Strontium sulfate (SrSO ₄)	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO ₃)	3.3×10^{-14}	Zinc hydroxide [Zn(OH) ₂]	1.8×10^{-14}
	101		

Zinc sulfide (ZnS)

 3.0×10^{-1}

 2.4×10^{-5}

Calculating K_{sp} **from Solubility**

The molar solubility of CaF_2 at 35°C is 1.24x10⁻³ M. (a) What is the solubility of CaF_2 in g/L? A: 0.968g/L

(b) What is K_{sp} at this temperature? A: 7.63x10⁻⁹

Calculating Solubility from K_{sp}

The K_{sp} for LaF₃ is 2.0x10⁻¹⁹.

(a) What is the molar solubility of LaF_3 in water? A: 9.3x10⁻⁶M

(b) What is the solubility in g/L? A: 1.8x10⁻³g/L

Comparing Molar Solubilities vs. K_{sp}

Compound BaSO₄ Mg₃(AsO₄)₂ K_{sp} 1.1x10⁻²⁰ 2.0x10⁻²⁰ Molar Solubility 1.0x10⁻⁵M 5.0x10⁻⁵M

Molar Solubility Comparison: $Mg_3(AsO_4)_2$ molar solubility is 5X greater than $BaSO_4$

K_{sp} **Comparison** BaSO₄ has a K_{sp} that is 10^9 X greater than Mg₃(AsO₄)₂

Be careful using K_{sp} **directly to compare solubilities**

- Number of ions present also matters
- Can only directly compare K_{sp} if # ions produced is identical

Factors Affecting Solubility:

Common-Ion Effect

 One of the ions in the compound is also part of another compound present in the solution

рΗ

Presence of hydroxide (OH⁻) or hydronium ions (H₃O⁺)

Complexation

 Formation of coordinate bonds with solvent or other molecules present in solution

Common-Ion Effect

The extent of ionization of a weak electrolyte is <u>decreased</u> by the addition of a strong electrolyte that has an <u>ion in common</u> with the weak electrolyte.

Equilibrium process – presence of ions shifts process back to reactants.

Ex: A solution is made with 1.0M CaCl₂ and 2.0M Ca(OH)₂

Common-Ion Calculations

1. Calculate the pH of a solution containing 0.085M nitrous acid (HNO₂; $K_a = 4.5 \times 10^{-4}$) and 0.10M potassium nitrite (KNO₂).

2. The K_{sp} of Mn(OH)₂ is 1.6x10⁻¹³. Calculate the molar solubility of Mn(OH)₂ in:

- a.) water A: 3.4x10⁻⁵M
- b.) A solution that contains 0.020M NaOH A: 4.0x10⁻¹⁰M
- c.) Compare the solubility of Mn(OH)₂ in these solutions

A: 85,000 times more soluble in water

3.) How much is the solubility of lead (II) chloride changed in the presence of 0.85M NaCl? $K_{sp} = 1.6 \times 10^{-5}$

More than 700X less soluble than in water

46