Chapter 17

Acid – Base Equilibria & Solubility Equilibria

Buffer Solutions (Buffers)

Solutions that resist changes in pH when small amounts of acid or base are added

- Must contain a <u>weak</u> acid or base <u>and</u>
- The <u>conjugate</u> (salt) of the weak acid or base
- i.e. Contain a weak conjugate acid/base pair
- pH is controlled by equilibrium [K_a (or K_b)] HA + H₂O \longrightarrow H₃O⁺ + A⁻

When small amounts of a strong acid or base are added:

• Acidic species in buffer neutralizes added OH HA + OH⁻ \longrightarrow H₂O + A⁻

• Basic species in buffer neutralizes added H^+_{\mp} $A^- + H_3O^+ \longleftarrow H_2O + HA$

How Buffers Work – Le Châtelier's Principle

- Add OH⁻, reduce H⁺, shift equilibrium toward conj. Base
 - OH⁻ will react with H⁺ to form water
- Add H⁺, shift equilibrium toward undissociated acid

Henderson-Hasselbalch Equation

$$pH = pK_a + log \frac{[A^{\cdot}]}{[HA]}$$

Comes from the equilibrium expression for: $HA \rightleftharpoons H^+ + A^-$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \longrightarrow K_{a} = [H^{+}]\frac{[A^{-}]}{[HA]}$$

Take the -log of both sides:Conj. base-log Ka = -log [H+] + -log $\frac{[A-]}{[HA]}$ acidpKapHacidTherefore:pKa = pH + -log $\frac{[A-]}{[HA]}$ For bases:pKa = pH + -log $\frac{[A-]}{[HA]}$ pOH = pKb + -log $\frac{[BH+]}{[B]}$

Rearrange to get Henderson-Hasselbalch

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$ Ice Table Method

pH = 3.27 ⁵

Using the Henderson-Hasselbalch Equation

1. A 1.00L buffer solution is prepared that contains 0.150M nitrous acid and 0.200M sodium nitrite. What is its pH? $K_a = 7.2 \times 10^{-4}$

H-H equation method:

Using the Henderson-Hasselbalch Equation

2. How many grams of sodium lactate (CH₃CH(OH)COONa) should be added to 1.0L of a 0.150M lactic acid (CH₃CH(OH)COOH) to form a buffer solution with pH=4.00? $K_a = 1.4 \times 10^{-4}$; molar mass of sodium lactate = 112.1g/mol

Buffer Capacity

Buffer Capacity: The amount of acid or base a buffer can neutralize before there is a significant change in pH.

- Ratio of weak base to weak acid ([A⁻]/[HA]) should be between 0.1 & 10.
- Most effective when $[A^-] = [HA]$ (i.e. ratio = 1)
 - Equal ability to neutralize acids & bases
- Buffer capacity depends on:
 - K_a of the acid
 - Concentration of buffer components
 - More concentrated = higher capacity

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

pH Range

pH Range: The range of pH values over which a buffer system works effectively

- Best to choose an acid with a pK_a close to the desired pH
- If $[A^-] = [HA]$, then $pH = pK_a$

$$pH = pK_a + log [HA]$$
 $log (1) = 0$

• Buffer generally usable withing ± 1 pH unit of the pK_a

Criteria for Making a Buffer

- 1. Choose a weak acid & conjugate base
 - Must have the same anion!
 - ex. HNO₂ & NaNO₂; HF & LiF
- 2. Select acid based on desired pH range
 - $pK_a < 7$ buffer is acidic; $pK_a > 7$ buffer is basic
 - Buffers can usually be adjusted to ±1 desired pH
- 3. Buffer salts (conjugate base) must be soluble & dissociate completely
 - Most commonly sodium or potassium salts
 - NH₄⁺ salts are acidic because NH₄⁺ dissociates
- 4. Concentrations of [HA] & [A⁻] > 0.01M
 - Must be able to neutralize sufficient acid/base
 - Can use ICE table to get an idea of what concentration is needed.

https://pages.uoregon.edu/tgreenbo/pHbuffer20.html

Buffer calculations

1. A 1.0 L buffer solution contains 0.150 M nitrous acid and 0.200 M sodium nitrite. $K_a = 7.2 \times 10^{-4}$ (a) What is the pH of the buffer? (b) What is the pH after adding 1.00 g HBr?

Buffer calculations

2. A buffer is made by adding 0.600 mol CH₃COOH and 0.600 mol CH₃COONa to enough water to make 2.00L of solution. $K_a = 1.8 \times 10^{-5}$.

(a) What is the pH of the buffer? A: 4.74

(b) Calculate the pH after 0.040 mol HCl is added. A: 4.69

(c) Calculate the pH after 0.040 mol NaOH is added. A: 4.80

Titration

A technique where a known concentration of acid (or base) is added to a solution of base (or acid).

- Used the determine the concentration of an unknown
- In CHM 101 we looked at <u>strong</u> acid/base systems
 - No equilibrium
 - Equivalence point is pH 7
- Indicators or pH meters are used to determine the equivalence point.

Titration Terminology

Equivalence Point:

Point at which the stoichiometric amount of acid and base are equal.

End Point: Point in the titration where the indicator changes color.

Solving More Complex Titration Problems

- 1. Read the question carefully to see what it is asking
 - pH at a particular point
 - Moles or molarity of original solution
 - pH or volume at equivalence point
- 2. Identify all reactants and products
 - Write the balanced equation
 - Determine the predominant products based on amounts given
 - Identify whether the solution is acidic or basic
- 3. Determine whether it is an equilibrium process
 - You will have at most one equilibrium
 - Strong acids/bases direct calculations from molarity
 - Weak acids/bases equilibrium calculations
- 4. Volume increases during titrations so watch for dilution factors

Titration of a Strong Acid with a Strong Base NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l) OH⁻(aq) + H⁺(aq) \rightarrow H₂O(l)

As more base is added, the increase in pH again levels off

Just before (and after) the equivalence point, the pH increases rapidly At the equivalence point, moles acid = moles base Solution contains only water and salt (neutral) Strong Acid/Strong Base Calculations

- In the titration of 25.0mL of 0.100M KOH with 0.100M HNO₃, determine the pH:
- (a) At the start of the titration (no acid added) A:13.0
- (b) When 24.9mL acid has been added A: 10.3
- (c) When 25.1mL acid has been added A: 3.7

Titration of a Weak Acid with a Strong Base NaOH(aq) + CH₃COOH(aq) \Longrightarrow CH₃COONa(aq) + H₂O(l) CH₃COO⁻(aq) + H₂O(l) \Longrightarrow CH₃COOH(aq) + OH⁻(aq)

After the equivalence pt., pH depends on concentration of excess strong base

At the equivalence pt. (moles acid = moles base) pH is >7 because the conjugate base of the acid affects the pH

Titration of a Weak Acid with a Strong Base

With weak acids:

- Initial pH is higher
- pH changes near the equivalence point are more subtle (smaller)
 - pH > 7 at equivalence point due to the formation of a basic salt (conjugate base of weak acid; ex: CH₃COONa

Weak Acid/Strong Base Calculations Things to Keep in Mind

- 1. Acid/Base titration always gives a salt & water
 - $HA + OH \implies A^{-} + H_2O$
- 2. Initial pH only depends on the weak acid
 - K_a & concentration
- 3. Addition of base up to just before equivalence point essentially forms a buffer solution
 - Contains weak acid & its conjugate base (salt)
 - Can use Henderson-Hasselbalch to determine pH
 - Determine moles of A⁻ & HA, then use total volume to calculate concentrations
 - Moles of salt will equal moles of base added because all added base will have been neutralized to form salt
- 4. Volume increases during titrations so watch for dilution factors

Weak Acid/Strong Base Calculations Things to Keep in Mind con't

- 4. At the equivalence point, all acids & bases are neutralized and the solution only contains the salt
 - The salt will be basic it is the product of a weak acid & a strong base
 - Main reaction is now hydrolysis of the salt
 - $A^- + H_2O \longrightarrow HA + OH^-$
 - Since the solution is basic use K_b
 - Can use moles of either acid or base to determine moles of salt formed.
 - Use total volume to get concentration.
- 5. After the equivalence point, there is only the excess strong base
 - pH will depend on concentration of excess strong base – moles not neutralized & total volume

When 100.0 mL of 0.10 *M* HNO₂ are titrated with a 0.10 *M* NaOH solution, what is the pH at the <u>equivalence point</u>? K_a HNO₂ = 4.5 x 10⁻⁴

- 35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:
- a.) At the start of the titration A: 2.78
- b.) When 20.0mL of 0.150M NaOH has been added A:4.88
- c.) At the equivalence point A: 8.86
- d.) When 50.0mL of 0.150M NaOH has been added A: 12.42

35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

b.) When 20.0mL of 0.150M NaOH has been added A:4.88

35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

c.) At the equivalence point A: 8.86

35.0mL of 0.150M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) was titrated with 0.150M NaOH. Determine the pH:

d.) When 50.0mL of 0.150M NaOH has been added A: 12.42

Titration of a Weak Base with a Strong Acid $HCl(aq) + NH_3 (aq) \Longrightarrow NH_4^+ (aq) + Cl^-(aq)$ $NH_4^+(aq) + H_2O(l) \Longrightarrow NH_3 (aq) + H_3O^+(aq)$

Initially there is only the weak [™] base; pH depends on concentration & K_b

After the equivalence pt., pH depends on concentration of excess strong acid

Before the equivalence pt., the solution is a buffer – it contains the weak base & its conjugate acid At the equivalence pt. (moles acid = moles base) pH is < 7 because the conjugate acid of the base affects the pH

Weak Base/Strong Acid Calculations

- 30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCl. Determine the pH:
- a.) At the start of the titration A: 10.87
- b.) When 20.0mL of 0.0250M HCl has been added A: 9.12
- c.) At the equivalence point A: 5.50
- d.) When 37.0mL of 0.025M HCI has been added A: 3.43

Weak Base/Strong Acid Calculations

30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCl. Determine the pH:

b.) When 20.0mL of 0.0250M HCl has been added A: 9.12

Weak Base/Strong Acid Calculations 30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCI. Determine the pH: c.) At the equivalence point A: 5.50

Weak Base/Strong Acid Calculations 30.0mL of 0.0300M NH₃ ($K_b = 1.8 \times 10^{-5}$) was titrated with 0.0250M HCI. Determine the pH:

d.) When 37.0mL of 0.025M HCI has been added A: 3.43

Acid-Base Indicators

Chemical added during a titration to cause a color change at a particular pH allowing the user to detect the endpoint.

Things to consider when choosing an indicator: Example: titration of CH₃COOH with NaOH

- What kind of titration is it? Weak acid with strong base
- What kind of salt is formed? Basic salt
- What happens to pH due to hydrolysis? Salt is basic so pH > 7.0

TABLE 17.1 Some Common Acid-Base Indicators			
Indicator	Color		
	In Acid	In Base	pH Range*
Thymol blue	Red	Yellow	1.2-2.8
Bromophenol blue	Yellow	Bluish purple	3.0-4.6
Methyl orange	Orange	Yellow	3.1-4.4
Methyl red	Red	Yellow	4.2-6.3
Chlorophenol blue	Yellow	Red	4.8-6.4
Bromothymol blue	Yellow	Blue	6.0–7.6
Cresol red	Yellow	Red	7.2-8.8
Phenolphthalein	Colorless	Reddish pink	8.3-10.0

*The pH range is defined as the range over which the indicator changes from the acid color to the base color.

Titrations of Polyprotic Acids

The titration of a polyprotic acid with a base will give an equivalence point for each acidic proton.