Factors impacting acid strength Basic concept: easier to lose H, stronger acid

Charge:

- Higher charge = stronger bond to H⁺ = weaker acid
- Ex: HAsO₄²⁻ weaker than H₂AsO₄⁻ weaker than H₃AsO₄

Bond length:

- Shorter bonds are stronger so H⁺ harder to remove
- Ex: HF weaker than HCl weaker than HBr

Electronegativity:

- Less electronegative, share e⁻ more equally, stronger bond
- Ex: P less electronegative than S, H₃PO₄ weaker than H₂SO₄

For Oxoacids

- If all else is equal, fewer double bonds = weaker acid
- Ex: H₂SO₃ weaker than H₂SO₄
- More double bonds = more resonance = more stability with H⁺ removed

Stability of conjugate base: more stable anion = more acidic

Binary Acid Trends in the Periodic Table

For binary acids:

Acidity increases left to right across a row

- Electrongativity increases left to right
 Acidity increases top to bottom down a group
- Atomic size increases down a group

Acid-Base Properties of Salts

Salts are ionic compounds – contain cation (+) & anion (-)

- Can be formed from acid/base neutralization
- Dissociate (separate into ions) when dissolve in water
- · Can sometimes impact pH through hydrolysis

Hydrolysis:

- Hydro = water
- lysis = to cut
- Reactions that break water into H⁺ (H₃O⁺) & OH⁻

Extent to which a salt causes hydrolysis determines extent of its acid-base properties (if any)

Acid-Base Properties of Salts

Hydrolysis can be caused by both cations & anions, but does not happen in every situation

Salts formed from conjugates of a strong acid + a strong base do not cause hydrolysis

For salt solutions: no hydrolysis = neutral (no OH^- or H_3O^+)

Acid-Base Properties of Salts

Soluble salts derived from a strong acid + weak base or a strong base + weak acid will cause hydrolysis

Ex 1:NaOH: strong base

$$CH_3COOH$$
: weak acid
 $CH_3COONa(s) \xrightarrow{H_2O} Na^+(aq) + CH_3COO^-(aq)$
 $CH_3COO^-(aq) + H_2O(I) \longrightarrow CH_3COOH(aq) + OH^-(aq)$
Ex 2:NH₃: weak base
 HCI : strong acid
 $NH_4CI(s) \xrightarrow{H_2O} NH_4^+(aq) + CI^-(aq)$
 $NH_4^+(aq) + H_2O(I) \longrightarrow NH_3(aq) + H_3O^+(aq)$

Determining if a Salt Solution is Acidic, Basic, or Neutral

Look at the ions that the salt dissociates into:

- If cation would come from a strong base not acidic
- If anion would come from a strong acid not basic
- If both cation & anion have a strong parent neutral
- If cation would come from a weak base acidic
- If anion would come from a weak acid basic
- If both cation & anion have a weak parent
 - Acidity/basicity depends on relative strength
 - Math can be complicated
 - Qualitatively:
 - \circ K_a < K_b basic solution
 - \circ K_a > K_b acidic solution
 - \circ K_a ≈ K_b pretty close to neutral

Determining if a Salt Solution is Acidic, Basic, or Neutral

- 1.) Predict whether aqueous solutions of the following compounds are acidic, basic, or neutral.
- a.) NH₄NO₃
- b.) FeCl₃
- c.) Na₂CO₃
- d.) KCIO₄
- e.) ZnF₂

2.) For each of the following pairs, indicate which salt would form the more acidic (i.e. less basic) 0.010M solution.

a.) NaNO₃ or $Fe(NO_3)_3$

b.) CH₃NH₃Cl or BaCl₂

c.) KNO₂ or KNO₃

d.) $(NH_4)_2SO_4$ or $(NH_4)_2SO_3$

3.) Calculate the $[OH^-]$ and pH of a 0.10M NaCN solution. K_a for HCN is 4.9×10^{-10} .

A: $[OH^-] = 1.4 \times 10^{-3} M$ pH = 11.16

4.) Calculate the pH of a 0.42M NH_4Cl solution. K_b for NH_3 is 1.8×10^{-5} A: pH = 4.82

59

What if an ion can act as either an acid or a base?

Occurs with salts from polyprotic acids such as H_2CO_3 , H_3PO_4 , H_2SO_4 .

Need to compare K_a and K_b values

Example: NaHCO₃

Acting as acid

•
$$HCO_3^{-}(aq) + 2H_2O(I) \Longrightarrow CO_3^{2-}(aq) + H_3O^{+}(aq)$$

$$K_a = 4.8 \times 10^{-11}$$
Acting

•
$$HCO_3^{-}(aq) + H_2O(I) \Longrightarrow H_2CO_3(aq) + OH^{-}(aq)$$

 $K_b = K_w/K_a = 2.4 \times 10^{-8}$

K_b > K_a so solution will be basic!

Lewis Acids & Bases

Acid:

An electron pair acceptor

- Do not need to have a removable proton
- Must have an empty orbital to put electrons in

Base:

An electron pair donor

Must have a pair of non-bonding electrons

Ex:
$$BF_3(g) + NH_3(g) \rightarrow F_3B-NH_3(g)$$

Hydration of Metal Ions

Salts with small, highly charged metal cations (e.g. Al³⁺, Fe³⁺, Cr³⁺, Be²⁺) and the conjugate base of a strong acid can also have acidic properties

Example:

AlCl₃ dissolved in water produces:

$$AI(H_2O)_6^{3+}(aq) + H_2O(I) \Longrightarrow AI(OH)(H_2O)_5^{2+}(aq) + H_3O^{+}(aq)$$

 $K_a = 1.3 \times 10^{-5} \rightarrow Acid! + 3CI^{-}(aq)$

- e in water molecules are pulled toward metal ion
- · O-H bonds in attached waters become more polarized
- H⁺ dissociates from water molecule forming H₃O⁺

Hydration of Metal Ions

Higher charge & smaller size make cations more acidic

$$Na^+ < Ca^{2+} < Zn^{2+} < Al^{3+}$$

Hydration of Metal Ions

Which member of each pair would produce a more acidic solution & why?

1.) CuCl or $Cu(NO_3)_2$

2.) CrCl₃ or NiCl₃