Acid Ionization Constant: K_a Equilibrium constant for acid dissociation Dissociation of acid in water:

$$HA(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$
$$K_{eq} = \frac{[H_3O^+][A^-]}{[HA]} = K_a$$

K_a is the acid ionization (aka acid dissociation) constant

- Quantitative measure of acid strength
- Higher K_a = stronger acid
- Sometimes discussed in terms of pK_a

 $pK_a = -log K_a$

K_a Values for Some Common Weak Acids

Name of Acid	Formula	Structure	Ka	Conjugate Base	$K_{\rm b}$
Hydrofluoric acid	HF	H—F	7.1×10^{-4}	F ⁻	1.4×10^{-11}
Nitrous acid	HNO_2	O=N-O-H	$4.5 imes 10^{-4}$	NO_2^-	2.2×10^{-11}
Acetylsalicylic acid (aspirin)	$C_9H_8O_4$	О С-О-Н О-С-С-СН ₃	3.0×10^{-4}	$C_9H_7O_4^-$	3.3×10^{-11}
		O II			
Formic acid	HCOOH	Н—С—О—Н	1.7×10^{-4}	HCOO ⁻	5.9×10^{-11}
Ascorbic acid*	$C_6H_8O_6$	Н—ООН	8.0×10^{-5}	$C_6H_7O_6^-$	1.3×10^{-10}
		H C C C = O			
		CH ₂ OH			
Benzoic acid	C ₆ H ₅ COOH	О С О Н	6.5×10^{-5}	C ₆ H ₅ COO ⁻	1.5×10^{-10}
Acetic acid	CH ₃ COOH	О ∥ СН₃—С—О—Н	$1.8 imes 10^{-5}$	CH_3COO^-	$5.6 imes 10^{-10}$
Hydrocyanic acid	HCN	H—C≡N	4.9×10^{-10}	CN^{-}	2.0×10^{-5}
Phenol	C ₆ H ₅ OH	О-О-Н	1.3×10^{-10}	$C_6H_5O^-$	7.7×10^{-5}

Calculations Using K_a

1.) 0.100mol of HF is dissolved in 1.00L of water at 25°C. The pH at equilibrium was found to be 2.08. Calculate K_a .

2.) What is the pH of a 0.122M monoprotic acid whose K_a is 5.7x10^{-4?}

Determining Relative Acidity

1.) Which is the stronger acid, HF or HNO₂?

Look up K_a in table: HF: 7.5×10^{-4} HNO₂: 4.6×10^{-4} Making Approximations in Equilibrium Calculations (do we need to use the Quadratic Equation?)

Answer: Only if the percent difference between X and the equilibrium concentration is >5%

Example A:

Find [HNO₂] for a 0.010M solution of Nitrous acid (HNO₂) at 25°C. HNO₂(aq) + H₂O(I) \implies H₃O⁺(aq) + NO₂⁻(aq) where $K_a = 2.9 \times 10^{-8}$. HCIO H₃O⁺ CIO⁻ $K_a = \frac{[H_3O^+][A^-]}{[HA]}$

	HCIO	H ₃ O⁺	ClO⁻
Ι	0.010	0	0
С	-X	+X	+X
E	0.010-X	Х	Х

 $2.9 \times 10^{-8} = \frac{[X][X]}{[0.010 - X]} \qquad \text{Ignore this X}$ [HCIO] = 0.010 - 0.000017 ~ 0.010 (0.000017/0.010)*100 = 0.17%

Approximation OK

 $X^2 = 2.9 \times 10^{-10}$ X = 0.000017

 $2.9 \times 10^{-8} = \frac{X^2}{0.010}$

Making Approximations in Equilibrium Calculations (do we need to use the Quadratic Equation?)

Answer: Only if the percent difference between X and the equilibrium concentration is >5%

Example B:

Find [HClO] for a 0.010M solution of Hypochlorous acid (HClO) at 25°C. HClO(aq) + H₂O(l) \implies H₃O⁺(aq) + ClO⁻(aq) where K_a = 4.5×10⁻⁴. [H₂O⁺][A⁻]

	HNO ₂	H ₃ O⁺	NO ₂ -
I	0.010	0	0
С	-X	+X	+X
E	0.010-X	Х	Х

 $4.5 \times 10^{-4} = \frac{X^2}{0.010}$ $X^2 = 4.5 \times 10^{-6}$ X = 0.0021

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

$$4.5 \times 10^{-4} = \frac{[X][X]}{[0.010 - X]} \qquad \text{Ignore this } X$$

$$[HNO_{2}] = 0.010 - 0.0021 \sim 0.008$$

$$(0.0021/0.008)*100 = 26\%$$
Approximation NOT acceptable

Making Approximations

1.) Find the pH of a 0.10M solution of Formic Acid (HCHO₂)

Look up K_a in table:

Percent Ionization and K_a

- Indicates the extent to which an acid is ionized
- Only matters for weak acids (100% for strong)
- Higher percent ionization = more ions = stronger acid

0.1M HCOOH, pH = 2.38

concentration of the acid increases

Strong acid

100

2 Factors affect pH of solution: nature of acid/base concentration

Calculations Using Percent Ionization

1.) Niacin, one of the B vitamins, has the following structure: \hat{I}

a.) If a 0.020M solution has a pH of 3.26, what is the K_a for niacin? A:1.6x10⁻⁵

b.) What is the percent ionization of the 0.020M solution?

2.) A 0.0100M solution of HNO_2 is 19% ionized at equilibrium. What is the K_a ?

A:4.46x10⁻⁴ 40

Polyprotic Acids

Acids that have more than one ionizable proton

• Ionize in successive steps $H_2CO_3(aq) + H_2O(I) \implies H_3O^+(aq) + HCO_3^-(aq)$

 $HCO_3(aq) + H_2O(I) \implies H_3O^+(aq) + CO_3^{2-}(aq)$

- Each step has its own K_a
- Easier to remove the first proton than the second, etc.
 - $K_{a1} > K_{a2} > K_{a3}$
- Successive equilibrium constants have less and less impact on pH
 - May not need to use all K values to solve a problem

Polyprotic Acids

If the difference between the K_a values for the first and 2nd, 3rd, etc. K_a values is 10³ or more, the pH generally depends on only the first dissociation.

Name	Formula	K _{a1}	K _{a2}	K _{a3}
Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous Sulfuric	$\begin{array}{c} H_{2}C_{6}H_{6}O_{6} \\ H_{2}CO_{3} \\ H_{3}C_{6}H_{5}O_{7} \\ H_{2}C_{2}O_{4} \\ H_{3}PO_{4} \\ H_{2}SO_{3} \\ H_{2}SO_{4} \end{array}$	8.0×10^{-3} 4.3×10^{-7} 7.4×10^{-4} 5.9×10^{-2} 7.5×10^{-3} 1.7×10^{-2} Large	$\begin{array}{c} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \\ 1.2 \times 10^{-2} \end{array}$	4.0×10^{-7} 4.2×10^{-13}
Tartaric	$H_2C_4H_4O_6$	1.0×10^{-3}	4.6×10^{-5}	

Polyprotic Acid Calculations Calculate the pH of a 0.0050M solution of sulfuric acid.

A: pH=2.10 43

Base Ionization Constant: K_b **Equilibrium constant for base dissociation** Weak bases react with water to produce hydroxide ions:

$$B(aq) + H_2O(I) \rightleftharpoons HB^+(aq) + OH^-(aq)$$
$$K_{eq} = \frac{[HB^+][OH^-]}{[B]} = K_b$$

K_b is the base ionization constant

- Quantitative measure of base strength
- Higher K_b = stronger base
- Sometimes discussed in terms of pK_b

$$bK_b = -\log K_b$$

Types of Weak Bases

- Neutral substances that have an atom with a nonbonding pair of electrons
 - Examples include ammonia (NH₃) & amines
 - Amines described at beginning of chapter (slide 5)
- Anions (conjugate bases) of weak acids
 - Examples include HCO₃⁻, CIO⁻, HS⁻
 - Act as H⁺ acceptors in water
 - Anions of strong acids do not act as bases not an equilibrium process
- Insoluble/slightly soluble hydroxides
 - Soluble hydroxides are strong bases
 - Ca(OH)₂, Fe(OH)₃
 - Solubility equilibriums (K_{sp}) will be discussed in the next chapter

K_b Values for Some Common Weak Bases

Name of Base	Formula	Structure	K_{b}^{*}	Conjugate Acid	Ka
Ethylamine	$C_2H_5NH_2$	CH_3 — CH_2 — N — H H	$5.6 imes 10^{-4}$	$C_2H_5\overset{+}{N}H_3$	$1.8 imes 10^{-11}$
Methylamine	CH ₃ NH ₂	СН ₃ —N—H Н	$4.4 imes 10^{-4}$	$CH_3 \overset{+}{N}H_3$	2.3×10^{-11}
Ammonia	NH ₃	H—N—H H	1.8×10^{-5}	NH_4^+	$5.6 imes 10^{-10}$
Pyridine	C_5H_5N	N:	1.7×10^{-9}	C_5H_5 ⁺ NH	$5.9 imes 10^{-6}$
Aniline	C ₆ H ₅ NH ₂		3.8×10^{-10}	$C_6H_5 \overset{+}{N}H_3$	$2.6 imes 10^{-5}$
Caffeine	$\mathrm{C_8H_{10}N_4O_2}$	$\begin{array}{c} & & \\ & & \\ & & \\ H_3C \\ & & \\ & & \\ H_3C \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	5.3×10^{-14}	$C_8H_{11}\dot{N}_4O_2$	0.19
Urea	(NH ₂) ₂ CO	$ \begin{array}{c} 0 \\ H - N - C - N - H \\ H H H \end{array} $	1.5×10^{-14}	$H_2NCON^+H_3$	0.67

K_a & K_b Relationship for Conjugate Acid/Base Pairs in Water

Base & water $NH_3 (aq) + H_2O(I) \implies NH_4(aq) + OH^-(aq) K_b = 1.8 \times 10^{-5}$ $pK_b = 4.74$

Conjugate acid & water $NH_4^+(aq) + H_2O(I) \implies NH_3(aq) + H_3O^+(aq)$ $K_a = 5.6 \times 10^{-10}$ $pK_a = 9.26$

Add the two reactions together: multiply K values (Ch15) $2H_2O(I) \implies H_3O^+(aq) + OH^-(aq)$

$$K_w = K_a x K_b = 1.0 x 10^{-14}$$

1.8x10⁻⁵ x 5.6x10⁻¹⁰ = 1.0x10⁻¹⁴

$$pK_a + pK_b = 14$$

9.26 + 4.74 = 14

Calculations Using K_b

1.) What is the pH of a 0.15M solution of NH_3 ? $K_b = 1.8 \times 10^{-5}$

2.) Codeine is a weak organic base. A 5.0×10^{-3} M solution of codeine has a pH of 9.95. Calculate the pK_b and the value of K_b for this base.

A:
$$K_b = 1.62 \times 10^{-6}$$

pK_b = 5.79 49

3.) A solution of ammonia in water has a pH of 11.17. What is the molarity of the solution? $K_b = 1.8 \times 10^{-5}$