## Chapter 16

## Acids & Bases

## $H_2O + H_2O \longrightarrow H_3O^+ + OH^-$



## Some Polyatomic lons that are Important for Acids & Bases

| Ammonium  | $NH_4^+$                         | Nitrate     | $NO_3^-$                      |
|-----------|----------------------------------|-------------|-------------------------------|
| Hydronium | $H_3O^+$                         | Nitrite     | $NO_2^{-1}$                   |
| Acetate   | CH <sub>3</sub> COO <sup>-</sup> | Phosphate   | PO <sub>4</sub> <sup>3-</sup> |
| Carbonate | CO <sub>3</sub> <sup>2-</sup>    | Perchlorate | CIO <sub>4</sub> -            |
| Hydroxide | OH <sup>-</sup>                  | Sulfate     | SO <sub>4</sub> <sup>2-</sup> |

#### You should know these ions

#### **Common Acids & Bases You Will Need to Know**

#### **Strong Acids:**

Hydrochloric AcidHClSulfuric Acid $H_2SO_4$ Nitric Acid $HNO_3$ Perchloric Acid $HClO_4$ Hydrobromic AcidHBrHydroiodic AcidHI

#### Weak Acids:

Carbonic Acid $H_2CO_3$ Phosphoric Acid $H_3PO_4$ Acetic Acid $CH_3COOH$ Hydrofluoric AcidHFCarboxylic AcidsV

| Strong Bases:       |                     |  |  |  |
|---------------------|---------------------|--|--|--|
| Soluble Hydroxides: |                     |  |  |  |
| Sodium              | NaOH                |  |  |  |
| Potassium           | КОН                 |  |  |  |
| Lithium             | LiOH                |  |  |  |
| Barium              | Ba(OH) <sub>2</sub> |  |  |  |
| etc.                |                     |  |  |  |

# Weak Bases:AmmoniaNH₃AminesInsoluble/slightlysoluble hydroxides

#### **Organic Acids: Carboxylic Acids (-COOH)**

#### Weak organic acids

- COOH group on molecule is acidic
- Removal of proton (H<sup>+</sup>) creates resonance structure
- Stabilizes anion

#### Never fully dissociate in water

• Equilibrium process

![](_page_3_Figure_7.jpeg)

#### **Organic Bases: Amines (contain N)** Weak organic bases

- Derivatives of ammonia
- N has lone pair of electrons to accept a proton Also do not fully dissociate in water
- Equilibrium process

![](_page_4_Figure_4.jpeg)

#### What are Acids & Bases? Arrhenius Definition

#### Acid:

A substance that, when dissolved in water, increases the concentration of hydrogen (H<sup>+</sup>) ions (aka protons).

HCl (g)  $\xrightarrow{H_2O}$  H<sup>+</sup> (aq) + Cl<sup>-</sup> (aq)

#### Base:

A substance that, when dissolved in water, increases the concentration of hydroxide ions (OH<sup>-</sup>).

NaOH (s)  $\xrightarrow{H_2O}$  Na<sup>+</sup> (aq) + OH<sup>-</sup> (aq)

#### What are Acids & Bases? Brønsted-Lowry Definition Acid:

A proton (H<sup>+</sup>) donor

- Must have a removable proton
- Proton goes to a base

![](_page_6_Figure_4.jpeg)

#### **Base**:

A proton (H<sup>+</sup>) acceptor

Must have a pair of non-bonding electrons

 $NH_3(aq) + H_2O(I) \implies NH_4^+(aq) + OH^-(aq)$ 

![](_page_6_Figure_9.jpeg)

## **Strength of Acids & Bases**

#### Strong Acids & Bases: Complete dissociation

- Conjugate acids & bases form spectator ions
- Can use basic stoichiometry (CHM 101) in calculations
- No original reactant or product left in solution

## Weak Acids & Bases: Incomplete dissociation

- Equilibrium process
- Equilibrium constants are K<sub>a</sub> or K<sub>b</sub>

#### Acid/Base Strength in Aqueous Solutions

- H<sub>3</sub>O<sup>+</sup> is the strongest acid
- OH<sup>-</sup> is the strongest base
- Acid or Base reacts with water
  - Water acts as a weak acid or base in the reaction

## H<sup>+</sup> Ion in Water

#### H<sup>+</sup> is simply a proton – an H atom with no electron

- In water, clusters of hydrated H<sup>+</sup> form
- Simplest cluster is the hydronium ion: H<sub>3</sub>O<sup>+</sup>

![](_page_8_Figure_4.jpeg)

• H<sup>+</sup> (aq) & H<sub>3</sub>O<sup>+</sup>(aq) are used interchangeably

$$HA \longrightarrow H^+ + A^-$$

$$HA + H_2O \implies H_3O^+ + A^-$$

### Proton Transfer Reactions: Aqueous Acid

![](_page_9_Figure_1.jpeg)

- HCI (the BL acid) donates a proton (H<sup>+</sup>)
- Water (the BL base) accepts the proton
- The conjugate base of the acid (Cl<sup>-</sup>) and the conjugate acid of the base (H<sub>3</sub>O<sup>+</sup>) are formed

## Proton Transfer Reactions: Aqueous Base

![](_page_10_Figure_1.jpeg)

- Water (the BL acid) donates a proton (H<sup>+</sup>)
- Ammonia (the BL base) accepts the proton
- Water is **AMPHIPROTIC** it can act as either an acid or a base (donate or accept a proton)

## Proton Transfer Reactions: Non-Aqueous

![](_page_11_Figure_1.jpeg)

- HCI (the BL acid) donates a proton (H<sup>+</sup>)
- Ammonia (the BL base) accepts the proton
- Can occur in the gas phase water not needed
- Advantage of Brønsted-Lowry definition over Arrhenius definition
- Lewis definition even more broad (electron pair donor/acceptor)

12

## **Conjugate Acid-Base Pairs**

![](_page_12_Figure_1.jpeg)

**Conjugate Acid:** Formed from the **base** after H<sup>+</sup> is added **Conjugate Base:** Formed from the **acid** after H<sup>+</sup> is lost

Each acid has a conjugate base, each base has a conjugate acid. Whether something is an acid or base depends on the system.

## **Conjugate Acid-Base Pair Examples**

- 1. Give the conjugate base of each of the following acids:
  - a) HIO<sub>3</sub>
  - b) NH<sub>4</sub>+
  - c)  $H_2S$
  - d) HPO<sub>4</sub><sup>2-</sup>

2. Write the formula for the conjugate acid of each of the following bases:

- a) HSO<sub>3</sub>-
- b) F<sup>-</sup>
- c) CO<sub>3</sub><sup>2-</sup>
- d) CH<sub>3</sub>NH<sub>2</sub>

## Acid-Base Properties of Water: Autoionization

Autoionization: In pure water, one water molecule can donate a proton to another water molecule

• Essentially the water ionizes itself ("auto")

![](_page_14_Figure_3.jpeg)

This is why pure water can conduct electricity

#### **Autoionization: An Equilibrium Process**

Consider the autoionization of water at 25°C

 $H_2O(I) + H_2O(I) \longrightarrow H_3O^+(aq) + OH^-(aq)$ Weak Base Weak Acid Strong Acid Strong Base

#### $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$

![](_page_15_Picture_4.jpeg)

This  $H_3O^+$  &  $OH^-$  concentration is where the pH of 7 for pure water comes from

 $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$  (ion-product constant)

 $K_w$  is very small = favors reactants ( $H_2O$ )

 $K_{\rm w}$  applies to both pure water and aqueous solutions

- If know acid concentration, can use  $K_w$  to find the base concentration & vice versa

## What is log?

#### Consider the number 1.0 x 10<sup>-3</sup>

- Log refers to base 10
- Essentially, it refers to the exponent in a number written in scientific notation
- It tells you the magnitude (size) of the number
- The log of 1.0 x 10<sup>-3</sup> is -3
- The formula for pH is -log to eliminate the negative sign in the answer

#### Consider the number 2.8 x 10<sup>-3</sup>

- Log still refers primarily to the exponent, but the actual value is impacted by the rest of the number
- The log of 2.8 x 10<sup>-3</sup> will be close to, but not exactly, 3
- $Log(2.8 \times 10^{-3}) = -2.6$

Low pH values are acidic because concentrations generally have negative exponents.  $1 \times 10^{-3}$ M >  $1 \times 10^{-10}$ M

## pH & pOH

## Method of Measuring Acidity

• <u>Power of the Hydrogen lon</u>

#### Formulas:

- $pH = -log[H_3O^+]$
- $[H_3O^+] = 10^{(-pH)}$
- $pOH = -log[OH^-]$
- $[OH^{-}] = 10^{(-pOH)}$
- $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} M$
- $pK_w = pH + pOH = 14$

Neutral:  $[H_3O^+] = [OH^-] pH = 7$ Acidic:  $[H_3O^+] > [OH^-] pH < 7$ Basic:  $[H_3O^+] < [OH^-] pH > 7$ 

| Sample                       | pH Value  |
|------------------------------|-----------|
| Gastric juice in the stomach | 1.0-2.0   |
| Lemon juice                  | 2.4       |
| Vinegar                      | 3.0       |
| Grapefruit juice             | 3.2       |
| Orange juice                 | 3.5       |
| Urine                        | 4.8-7.5   |
| Water exposed<br>to air*     | 5.5       |
| Saliva                       | 6.4-6.9   |
| Milk                         | 6.5       |
| Pure water                   | 7.0       |
| Blood                        | 7.35-7.45 |
| Tears                        | 7.4       |
| Milk of<br>magnesia          | 10.6      |
| Household<br>ammonia         | 11.5      |

Sig Figs: # sig figs in concentration = # sig figs after decimal point in  $pH/pOH_{18}$ 

## Measuring pH

#### Most Accurate: pH meter

 Measures the voltage in a solution to determine concentration & pH

![](_page_18_Picture_3.jpeg)

![](_page_18_Figure_4.jpeg)

#### Other methods:

- Litmus paper
  - Red litmus paper turns blue above ~ pH 8
  - Blue litmus paper turns red below ~ pH 5
- Indicators
  - In solution or on pHydrion paper

#### **Concentrated vs. Dilute Solutions**

Example 1: Concentrated Solutions Consider an aqueous 0.010M solution of nitric acid. Two reactions are occurring:  $HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq) [H_3O^+] = 0.010M$  $2H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq) [H_3O^+] = 1.0 \times 10^{-7}M$ 

The  $[H_3O^+]$  from ionization of water is negligible: 0.010M + 0.0000001M = 0.0100001M It can be ignored

## **Concentrated vs. Dilute Solutions**

## Example 2: Dilute Solutions

- Consider an aqueous 1.0x10<sup>-6</sup>M solution of nitric acid.
- Two reactions are again occurring:
- $HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq) [H_3O^+] = 1.0 \times 10^{-6} M$
- $2H_2O(I) \implies H_3O^+(aq) + OH^-(aq)$   $[H_3O^+] = 1.0 \times 10^{-7} M^*$
- \*Likely somewhat less due to Le Châtelier's Principle

The [H<sub>3</sub>O<sup>+</sup>] from ionization of water is 10% of the amount contributed by the acid: 1.0x10<sup>-6</sup>M + 0.1x10<sup>-6</sup>M = 1.1x10<sup>-6</sup>M <u>It CANNOT be ignored</u>

Contribution from autoionization of water must be taken into account if acid/base provides < 10<sup>-6</sup>M H<sub>3</sub>O<sup>+</sup>/OH<sup>-</sup>

#### pH Calculations for Strong Acids/Bases

 Calculate [H<sup>+</sup>] at 25°C for an aqueous solution in which [OH<sup>-</sup>] = 0.00045M. Indicate whether it is acidic, basic, or neutral. A: 2.2x10<sup>-11</sup>M; basic

# 2. Find the pH and pOH of a 0.0050M HBr solution at 25°C pH: 2.30; pOH: 11.7

3. Calculate the  $H_3O^+$  and  $OH^-$  concentrations at 25°C of an aqueous 0.010M solution of nitric acid. [H<sub>3</sub>O<sup>+</sup>]: 0.010M [OH<sup>-</sup>]: 1.0x10<sup>-12</sup>M

4. Find the pH of a 0.035 M aqueous solution of sulfuric acid. A:1.15

5. Calculate the pH made from 15.00mL of 1.00M HCl diluted to 0.500L. A:1.523

6. What is the concentration of a solution of  $Ba(OH)_2$  for which the pH is 10.05? A: 5.6x10<sup>-5</sup>M

## **Strength of Acids & Bases**

#### Strong Acids & Bases: Complete dissociation

- Strong electrolytes
- Good conductors of electricity
- Completely ionized in aqueous solution; no original compound remains
- Conjugate has no measurable strength
- Single arrow not equilibrium
- H<sub>3</sub>O<sup>+</sup> is the strongest acid that can exist in aqueous solution.

![](_page_24_Figure_8.jpeg)

 $HNO_3(aq) + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq)$ 

 $NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$ 

## **Strength of Acids & Bases**

Weak Acids & Bases: Incomplete dissociation

- Some of original compound remains along with ions
- Equilibrium process; represented by double arrow
- Dissociation is governed by an equilibrium constant
  - K<sub>a</sub> or K<sub>b</sub>
- Poor conductors of electricity
- Conjugates can act as acids/bases

![](_page_25_Figure_8.jpeg)

 $CH_3COOH(aq) + H_2O(I) \implies H_3O^+(aq) + NO_3^-(aq)$ 

 $CH_3NH_2(aq) + H_2O(I) \longrightarrow CH_3NH_3^+(aq) + OH^-(aq)$ 

![](_page_26_Figure_0.jpeg)

#### **Relative Strengths of Conjugate Acid-Base Pairs**

#### Strong Acids/Bases give weak conjugates and vice versa

| Та                      | ıble       | 16.2                           | Relative Strengths of Conjug | gate Acid-Base Pairs                                 |      |
|-------------------------|------------|--------------------------------|------------------------------|------------------------------------------------------|------|
|                         |            | Acid                           |                              | Conjugate Base                                       |      |
| Acid strength increases | N          | (HClO <sub>4</sub>             | (perchloric acid)            | ClO <sub>4</sub> <sup>-</sup> (perchlorate ion)      |      |
|                         | acids      | HI (hy                         | droiodic acid)               | I <sup>-</sup> (iodide ion)                          |      |
|                         |            | HBr (1                         | hydrobromic acid)            | Br <sup>-</sup> (bromide ion)                        |      |
|                         | gno        | HCl (ł                         | nydrochloric acid)           | Cl <sup>-</sup> (chloride ion)                       |      |
|                         | Str        | H <sub>2</sub> SO <sub>4</sub> | (sulfuric acid)              | HSO <sub>4</sub> <sup>-</sup> (hydrogen sulfate ion) |      |
|                         |            | HNO3                           | (nitric acid)                | NO <sub>3</sub> <sup>-</sup> (nitrate ion)           | ases |
|                         |            | $\mathrm{H_{3}O^{+}}$          | (hydronium ion)              | H <sub>2</sub> O (water)                             | crea |
|                         |            | $(HSO_4^-)$                    | (hydrogen sulfate ion)       | $SO_4^{2-}$ (sulfate ion)                            | n in |
|                         |            | HF (h                          | ydrofluoric acid)            | F <sup>-</sup> (fluoride ion)                        | ngtl |
|                         |            | HNO <sub>2</sub>               | (nitrous acid)               | $NO_2^-$ (nitrite ion)                               | stre |
|                         | Weak acids | HCOC                           | OH (formic acid)             | HCOO <sup>-</sup> (formate ion)                      | ase  |
|                         |            | CH <sub>3</sub> C              | OOH (acetic acid)            | CH <sub>3</sub> COO <sup>-</sup> (acetate ion)       | B    |
|                         |            | NH <sub>4</sub> <sup>+</sup> ( | ammonium ion)                | NH <sub>3</sub> (ammonia)                            |      |
|                         |            | HCN                            | (hydrocyanic acid)           | CN <sup>-</sup> (cyanide ion)                        |      |
|                         |            | H <sub>2</sub> O (             | water)                       | OH <sup>-</sup> (hydroxide ion)                      |      |
|                         |            | NH <sub>3</sub> (a             | ammonia)                     | $\rm NH_2^-$ (amide ion)                             | 1    |

Stronger acids will dominate over weaker acids HNO<sub>2</sub>(aq) + CN<sup>-</sup>(aq)  $\implies$  HCN(aq) + NO<sub>2</sub>(aq) K>1