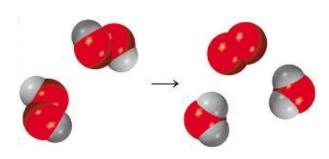

Chapter Fourteen: Chemical Kinetics

Rate of Reaction = speed

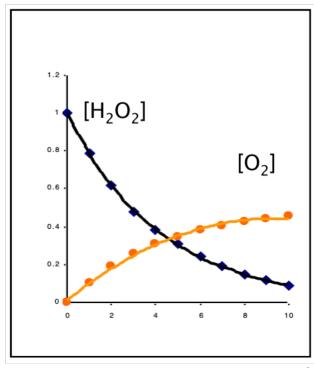


Kinetics & Reaction Rates

Kinetics Topics:

- Study of rates of chemical reactions
- How fast does a reaction proceed?

Reaction Rate:


Rate =
$$\frac{\Delta Concentration}{\Delta Time}$$
 = $\frac{[mol/L]}{\Delta T}$ = $\frac{M}{sec}$

$$2 H_2O_2(I) \rightarrow 2 H_2O(I) + O_2(g)$$

Rate of formation of product: Rate = $+\Delta[O_2]/s$

Rate of disappearance of reactant:

Rate = $-\Delta[H_2O_2]/s$ (Use of negative makes rate positive)

When writing rates based on other reactants or products, <u>think</u> about what is happening

$$Br_2$$
 (aq) + HCOOH (aq) \rightarrow 2 Br^- (aq) + 2H⁺ (aq) + CO₂ (g)

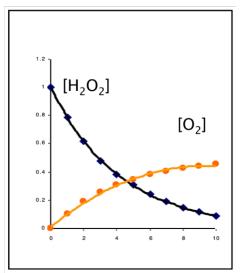
Rate at which Br₂ disappears: X M/s In terms of Br₂:

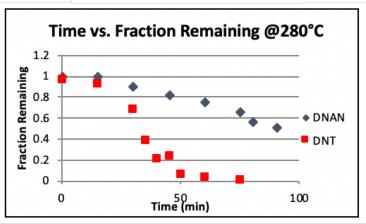
What is the rate of formation of Br⁻? What is the rate of disappearance of HCOOH?

Rate at which Br forms: Z M/s In terms of Br:

What is the rate of disappearance of Br_2 ? What is the rate of formation of CO_2 ?

This method works for zero order & instantaneous rates, not for more complex rates.

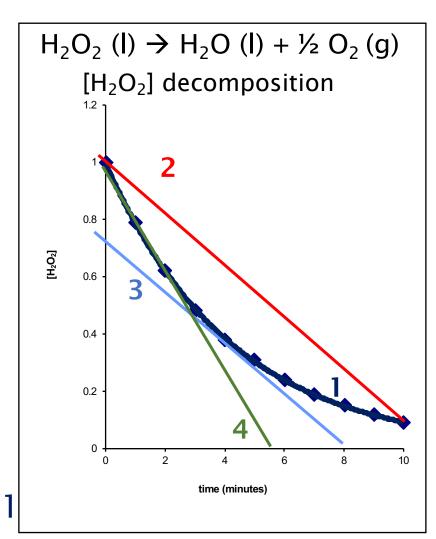

Linearity of Reaction Rates


Reaction rates vary greatly

- · Very fast; ex: burning
- Very slow; ex: disintegration of plastic in sunlight

Often not linear

- Rate is often faster at the beginning
- Rate is slowest at the end
- Some reactant often left over
- Especially pronounced for slow reactions



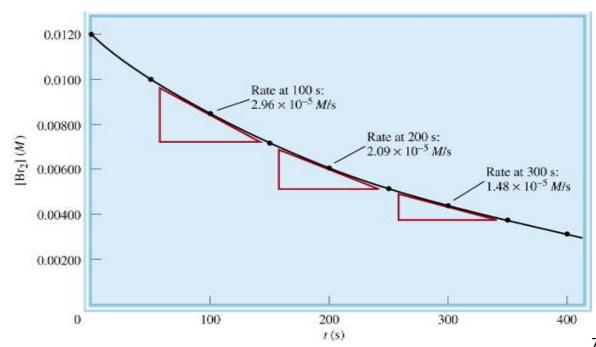
Average Rate of Reaction:

$$Rate = \frac{Final\,Concentration - Initial\,Concentration}{Elapsed\,Time}$$

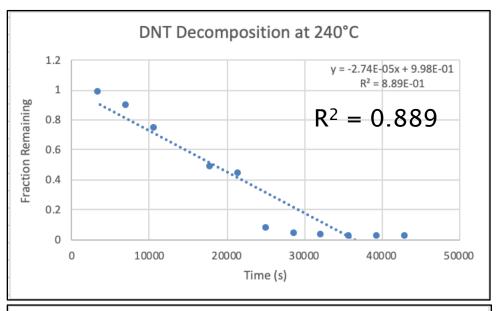
Types of Reaction Rates Reaction rate = ΔConcentration/Δtime = slope

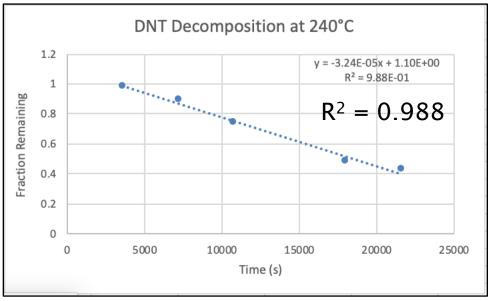
- 1. Plot of original data
 - [Conc.] vs time
 - If curved = rate changes
 - Will reach equilibrium
 - If linear = rate is constant
 - Will run out of reactant
- 2. Average rate of reaction
- 3. Instantaneous rate
 - Tangent to curve 1
 - Can pick any time
- 4. Initial rate
 - t=0 to t=given time
 - Generally portion of curve 1 that is linear

Instantaneous Rate


$$Br_2(aq) + HCOOH(aq) \rightarrow 2 Br^{-}(aq) + 2H^{+}(aq) + CO_2(g)$$

Brown color of Br₂ disappears as reaction progresses


To Find Instantaneous Rate:


- Select time
- Draw line tangent to curve at that time
- Find slope of the tangent line
- Units of [conc.]/time

Initial Rate

Portion of original data where curve is linear

Rate Laws:

Impact of Reactant Concentration on Rate

Rate Law Format: For the reaction $A + B + C \dots \rightarrow Products$

Rate Law: Rate = $k[A]^m[B]^n[C]^p$

Based on initial concentrations and rate

Variables required in Rate Law:

k = rate constant

m = order of reaction in reactant A

n = order of reaction in reactant B

p = order of reaction in reactant C

other letters as needed for additional reactants

Overall Order of Reaction = sum of the orders of reaction for each reactant

Overall Order = m + n + p

Rate Laws account for non-linearity of reactions

Rate Laws con't

Properties of Rate Laws:

- Orders do not need to be positive integers
 - Ex: if concentration does not impact rate, order is zero
- Orders must be found experimentally
- Catalyst concentrations are included
- Rate Laws hold only for a specific temperature
- Rate Laws do NOT come from the balanced equation!

Example:

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

Not squared!

Rate = $k[H_2][NO]^2$

Rate Constant, k

- Depends on reaction, temperature, and catalyst
- Found experimentally

Determining Rate Laws: Isolation Method

Conduct a series of experiments

- Change the concentration of just one reactant each time
- Measure the impact on the rate from each reactant
- Use the ratios of the rates to determine m, n, etc.
- · Rearrange the Rate Law & plug in values to solve for k.

Example: For the reaction $A + B \rightarrow Products Rate = k[A]^m[B]^n$

Conduct 3 experiments: 1. Use [A] & [B], measure Rate 1

2. Use [A]₂ & [B], measure Rate 2

3. Use [A] & $[B]_2$, measure Rate 3

To determine m, divide Rate $1 = \frac{k[A]^m[B]^n}{k[A]^m[B]^n} = \frac{[A]^m}{[A]^m}$

Rate 2 $k[A]_2^m[R]^n [A]_2^m$

To determine n, divide Rate $1 = \frac{k[A]^m[B]^n}{Rate 3} = \frac{[B]^n}{k[A]^m[B]_2^n} = \frac{[B]^n}{[B]_2^n}$

To determine k, solve k = Rate

When reporting Rate Laws, use the numbers for k, m, & n

Determining Rate Laws: Isolation Method

A set of experiments was run to study the rate of the reaction:

 BrO_3^- (aq) + $5Br^-$ (aq) + $6H^+$ (aq) $\rightarrow 3Br_2$ (aq) + $3H_2O$ (I) The following data was obtained:

Expt #	[BrO ₃ ⁻]	[Br¯]	[H+]	Rate (M/s)
1	0.10	0.10	0.10	-1.2 x 10 ⁻³
2	0.20	0.10	0.10	-2.4 x 10 ⁻³
3	0.20	0.30	0.10	-7.4 x 10 ⁻³
4	0.20	0.10	0.15	-5.4 x 10 ⁻³

Rate = $k[BrO_3]^m[Br]^n[H^+]^p$

Determining Rate Laws: Order of Reactants

Rate=
$$k[BrO_3^-]^m[Br^-]^n[H^+]^p$$

Expt #	[BrO ₃ -]	[Br-]	[H+]	Rate (M/s)
1	0.10	0.10	0.10	-1.2 x 10 ⁻³
2	0.20	0.10	0.10	-2.4 x 10 ⁻³
3	0.20	0.30	0.10	-7.4 x 10 ⁻³
4	0.20	0.10	0.15	-5.4 x 10 ⁻³

Order of reaction in BrO₃ (m):

Order of reaction in Br (n):

Order of reaction in H⁺ (p):

Determining Rate Laws: k & Rate Law

Expt #	[BrO ₃ -]	[Br ⁻]	[H+]	Rate (M/s)
1	0.10	0.10	0.10	-1.2 x 10 ⁻³
2	0.20	0.10	0.10	-2.4 x 10 ⁻³
3	0.20	0.30	0.10	-7.4 x 10 ⁻³
4	0.20	0.10	0.15	-5.4 x 10 ⁻³

Rate= $k[BrO_3^-]^m[Br^-]^n[H^+]^p$

$$m = 1$$

$$n = 1$$

$$n = 2$$

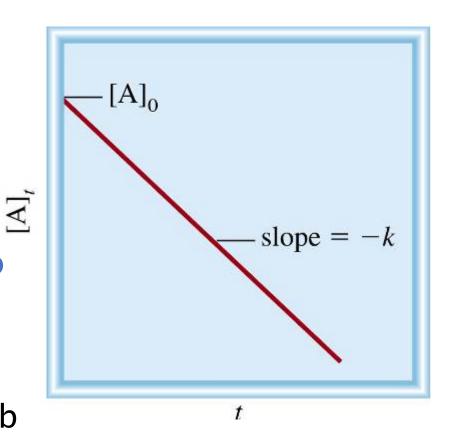
k: Solve using data from each experiment (4X!) & average

$$k = Rate [BrO3-]1[Br-]1[H+]2$$

Types of Reactions Based on Rate: Zero Order

Change in concentration over time IS linear

Rate Law for $A \rightarrow Product$: rate = k [A]⁰ = k


Units of k: k = rate = M/s

Linear Rate Equation:

$$[A] = -kt + [A]_0$$

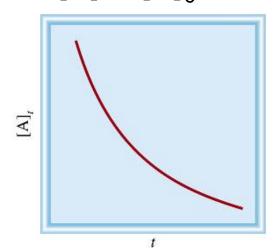
Eventually [A] will go to zero (all reactant will be used up)

Note that this equation is in the form y = mx + b, where b is the y-intercept (i.e. the initial concentration of A).

Types of Reactions Based on Rate: First Order

Change in concentration over time is NOT linear

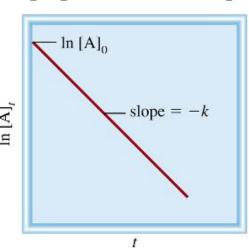
Change in the natural log (In) of concentration over time IS linear.


Rate Law for A
$$\rightarrow$$
 Product: rate = $-\frac{\Delta[A]}{\Delta t} = k[A]$

Units of k: $k = rate/[A] = (M/s)/M = 1/s = s^{-1}$

[A] vs. time is Nonlinear

In [A] vs time is Linear:


$$[A] = [A]_0 e^{(-kt)}$$

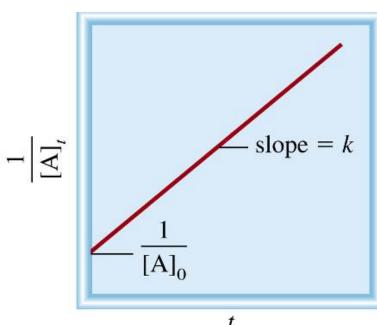
$$\ln\left(\frac{[A]}{[A]_0}\right) = -kt$$

$$[A]_t = [A]$$
 at time t
 $[A]_0 = [A]$ at $t = 0$

$$ln[A] = -kt + ln[A]_0$$

Types of Reactions Based on Rate: Second Order

Change in concentration over time is NOT linear

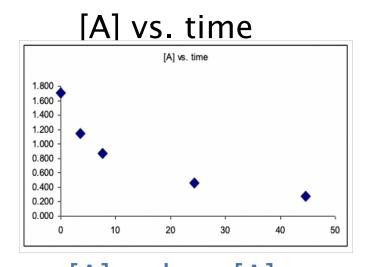

Change in the inverse of concentration (1/[A]) over time IS linear.

Rate Law for A
$$\rightarrow$$
 Product: rate = $-\frac{\Delta[A]}{\Delta t} = k[A]^2$

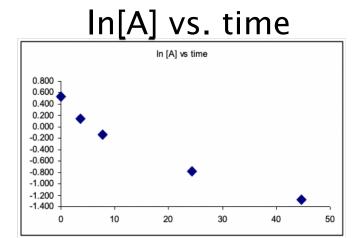
Units of k: $k = rate/[A]^2 = (M/s)/M^2 = 1/Ms = M^{-1}s^{-1}$

The linear equation is:

$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$

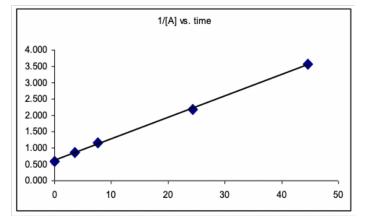

Predicting Reaction Order Graphically

For the reaction A \rightarrow Products:


- 1. Calculate In[A] and 1/[A]
- 2. Make 3 graphs: [A], In[A], and 1/[A] vs. time
- 3. The graph with the best straight line is the reaction order

	Zero	First	Second
time, s	[A] M	In [A]	1/[A]
0	1.710	0.536	0.585
4	1.150	0.140	0.870
8	0.870	-0.139	1.149
24	0.460	-0.777	2.174
45	0.280	-1.273	3.571

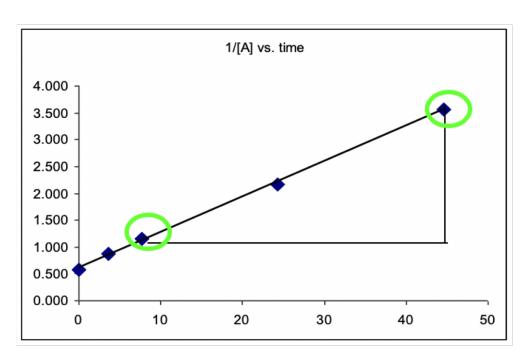
Predicting Reaction Order Graphically



 $[A] = -kt + [A]_0$ Not linear, so not Zero Order Not linear, so not First Order

 $ln[A] = -kt + ln[A]_0$

1/[A] vs. time


 $1/[A] = kt + 1/[A]_0$ Linear, so reaction is Second Order

Using a Graph to Find Rate Constant, k

Equation of the line is:
$$y = mx + b$$

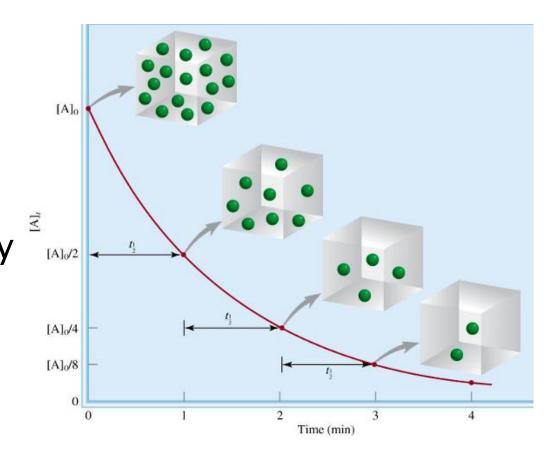
$$1/[A] = kt + 1/[A]_0$$

k = m = slope!

$$k = m = (y - y_1)/(x - x_1)$$

$$= (3.57 - 1.15)/(45 - 8)$$

$$= 0.066 \text{ M}^{-1}\text{s}^{-1}$$


$$\frac{1}{[A]} = 0.066t + \frac{1}{[A]_0}$$

Half-Life $(t_{1/2})$

The time required for $[A]_0$ to decrease by 50%

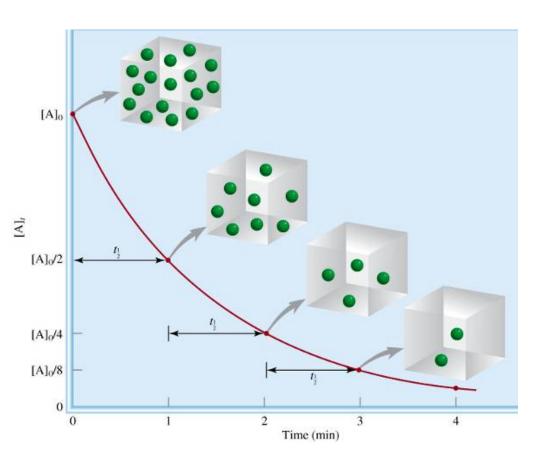
- NOT the time for half of the reaction to occur
- Provides another way to get the rate constant

- Symbol is t_{1/2}
- t_{1/2} depends on reaction order
- Can solve for t_{1/2} by plugging [A]₀ = 1 and [A] = ½ into rate equation

Half-Life of a First Order Reaction

Linear Equation:

$$ln[A] = - kt + ln[A]_0$$


Rearranged Equation:

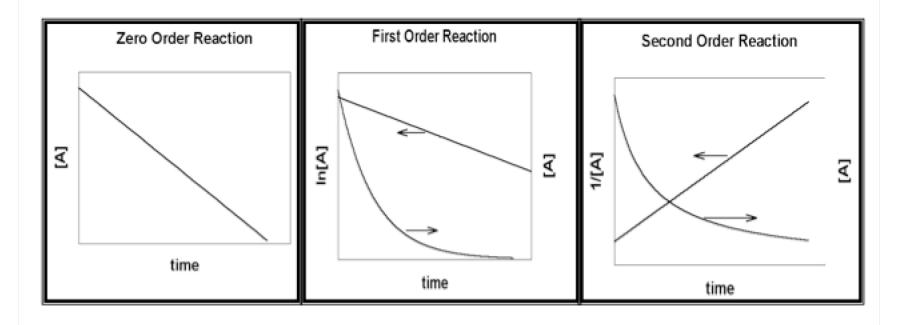
$$\ln \frac{[A]}{[A]_0} = -kt$$

Plug in:
$$[A]_0 = 1\& [A] = \frac{1}{2}$$

 $ln(1/2) = -kt_{1/2}$

Solve for $t_{1/2}$:

$$t_{1/2} = \text{In } 2/k = 0.693/k$$

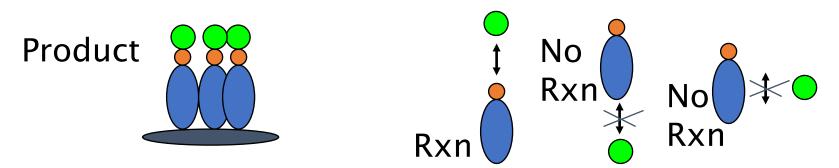

For a First Order Reaction:

 $t_{1/2}$ is independent of initial reactant concentration

If you know $t_{1/2}$, you know the rate constant

Summary of Kinetic Data

Order	Rate Law	Integrated Rate Law	Linear Plot	k	Half-life
0	Rate = k	$[A]_t = -\underline{kt} + [A]_0$	[A] vs. t	-slope	[A] ₀ /2k
1	Rate = k[A]	$ln[A]_t = -\underline{kt} + ln[A]_0$	ln[A] vs. t	-slope	0.693/k
2	Rate = $k[A]^2$	$1/[A]_t = kt + 1/[A]_0$	1/[A] vs. t	+slope	1/k[A] ₀

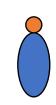


Activation Energy & Temp. Dependence of Rate Constants

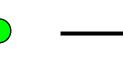
Collision Theory:

Three things must happen for a reaction to occur:

- 1. Reacting molecules must collide
 - Can increase the number of collisions with
 - increased reactant concentration
 - higher temps (= faster molecules)
- 2. Molecules must have the correct orientation



3. Activation Energy (E_a) must be exceeded

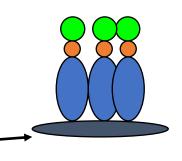

 E_a = minimum energy required for a reaction to occur

Factors Affecting Reaction Rates Increasing # collisions increases rate

Reaction: + - -

1. Increase concentration of reactant

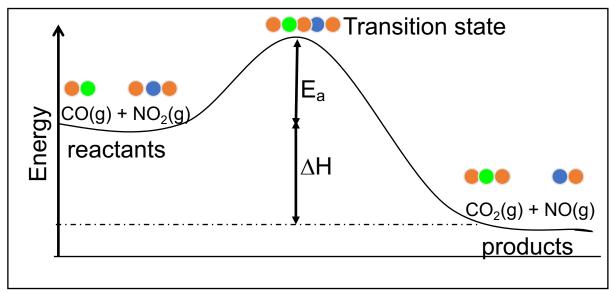
more particles in same volume = greater chance of collision


2. Increase temperature

Particles move faster - more likely to collide with enough EA

3. Add a catalyst

Catalyst: chemical that does not change the amount of overall product or reactants, only the rate of the reaction


- fix molecular orientation
- alter transition state; lower E_a
- increase desired surface area

Energy Diagrams: Activation Energy & Transition State

Given the following reaction:

$$CO(g) + NO_2(g) \rightarrow$$

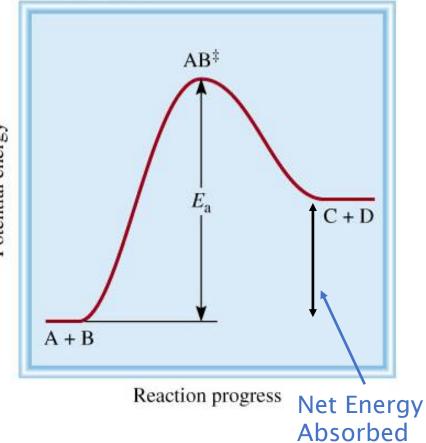
 $CO_2(g) + NO(g)$

Reactants: Original components before a reaction

Products: New elements/compounds formed from reaction

Transition State (aka Activated Complex): Temporary & generally unstable combination of atoms formed from molecular collision. Will be transformed into products as the reaction proceeds.

26


Energy Diagrams: Thermodynamics & Reaction Progress

$$A + B \rightarrow AB^{\ddagger} \rightarrow C + D$$

Exothermic Reaction

AB‡ Potential energy Potential energy A + BC + DReaction progress **Net Energy** Released

Endothermic Reaction

Effect of Temperature on Reaction Rate: Arrhenius Equation

Arrhenius Equation – Shows how temp. affects the rate constant (k)

$$k = Ae^{-E_a/RT}$$
 or $ln k = -E_a/RT + ln A$

k = rate constant

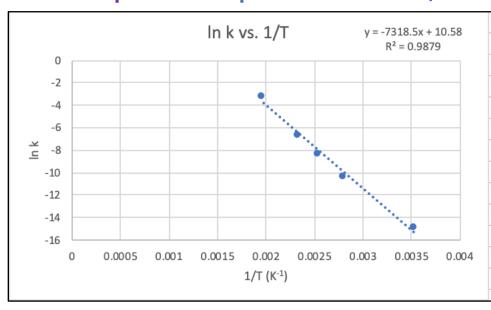
A = frequency factor (based on collision frequency & the probability of correct orientation; constant for a given system)

 E_a = activation energy

R = gas constant in energy units (8.314 J mol⁻¹ K⁻¹)

T = temperature in Kelvin

Graphing In k vs. 1/T gives a straight line with $slope = -E_a/R$


Provides a method to determine E_a for a reaction

Arrhenius Equation Example

Reaction: 2 HI(g) \rightarrow H₂(g) + I₂(g)

Step 1: Find k at several temps. Step 2: Graph In k vs. 1/T

Temp. (K)	k (M ⁻¹ s ⁻¹)
283	3.52x10 ⁻⁷
356	3.02x10 ⁻⁵
393	2.19x10 ⁻⁴
427	1.16x10 ⁻³
508	3.95x10 ⁻²

slope =
$$\frac{\Delta Y}{\Delta X} = \frac{(lnk_2 - lnk_1)}{\left(\frac{1}{L_2} - \frac{1}{L_2}\right)}$$

slope =
$$-7318.5 \text{ K}$$

Step 3: Calculate slope (=
$$-E_a/R$$
) Step 4: Multiply slope by slope = $\Delta Y = \frac{\Delta Y}{\ln k_2 - \ln k_1}$ —R to get E_a

$$E_a$$
= -7318.5K *-8.314 J/molK
 E_a = 60846 J/mol
= 608 kJ/mol

2 -Point Arrhenius Equation Example

Use rate constants at just 2 temps to solve for E_a

- This method is less accurate but only requires 2 k values
- Best to use only if there is limited data

• Equation:
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Find E_a for the reaction: $2HI(g) \rightarrow H_2(g) + I_2(g)$

Data:

$$k_1 = 0.0395 \text{ M}^{-1}\text{s}^{-1}$$

 $T_1 = 508 \text{ K}$

$$k_2 = 0.00116 \text{ M}^{-1}\text{s}^{-1}$$

 $T_2 = 427 \text{ K}$

Reaction Mechanism: What (we think) actually happens during a reaction

Series of elementary reactions that lead to an overall rxn

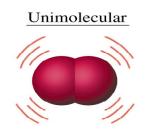
Mechanism info can be used to modify reactions to increase yield, speed, etc.

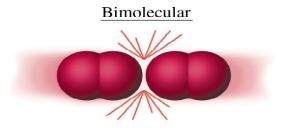
Ex:
$$2 \text{ NO(g)} + O_2(g) \rightarrow 2 \text{NO_2(g)}$$

$$2 \text{NO(g)} \longrightarrow N_2 O_2(g)$$

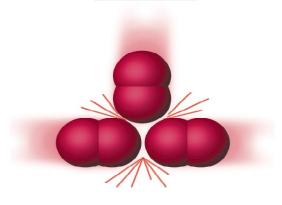
$$N_2 O_2(g) \longrightarrow 2 \text{NO_2(g)}$$

$$O_2(g) \longrightarrow 2 \text{NO_2(g)}$$


N₂O₂ is detected during the reaction!


Elementary Step: $NO + NO \rightarrow N_2O_2$

+ Elementary Step: $N_2O_2 + O_2 \rightarrow 2NO_2$


Overall Reaction: $2NO + O_2 \rightarrow 2NO_2$

Some Terminology: Molecularity Number of molecules reacting in an elementary step

Termolecular

Unimolecular - one

- Fastest
- Molecule simply breaks apart
- No molecular alignment needed

Bimolecular - two

- Most common
- May require correct alignment

Termolecular - three

- Usually rate limiting (slow!)
- Low probability that all 3 particles will collide simultaneously

Some More Terminology

Intermediates: Species that appear in a reaction mechanism but not in the overall reaction N_2O_2 is an

- Formed in an early elementary step
- Consumed in a later elementary step

Ex:

Elementary Step:
$$NO + NO \rightarrow N_2O_2$$

+ Elementary Step: $N_2O_2 + O_2 \rightarrow 2NO_2$
Overall Reaction: $2NO + O_2 \rightarrow 2NO_2$

Rate Determining Step: Slowest step in the sequence of steps leading to the overall reaction

Often determined by molecularity

intermediate

Rate Laws & Intermediate Steps

Unimolecular reaction: $A \rightarrow Products$ rate = k[A]

Bimolecular reaction: $A + B \rightarrow Products rate = k[A][B]$

Bimolecular reaction: $A + A \rightarrow Products rate = k[A]^2$

Writing reaction mechanisms:

- The sum of the elementary reactions <u>must</u> give the overall balanced equation for the reaction.
- The rate-determining step should predict the same rate law that is determined experimentally
- The rate law for each step is found from the coefficients of the reactants. This is ONLY true for ELEMENTARY reactions!

Developing a Reaction Mechanism

Measure the rate of the reaction:

- Run a set of isolation method experiments
 - Run 1 experiment for each reactant + a control
 - Measure [A] vs. time

Formulate the rate law

- Determine the order of each reactant based on data
- Use the results to calculate an average value for k
- Determine the overall rate of the reaction

Suggest a reaction mechanism

- Elementary steps must match stoichiometry of overall rxn
- Use molecularity to determine rate determining step
- Order of rate-determining step must match overall rxn order

Ex: Developing a Reaction Mechanism for $NO_2 + CO \rightarrow NO + CO_2$

Based on the results of a set of isolation method experiments, the overall rate was found to be:

Rate =
$$k[NO_2]^2$$

Suggested reaction mechanism:

- Need to account for rate being 2nd order in NO₂
- Need to account for rate being zero order in CO

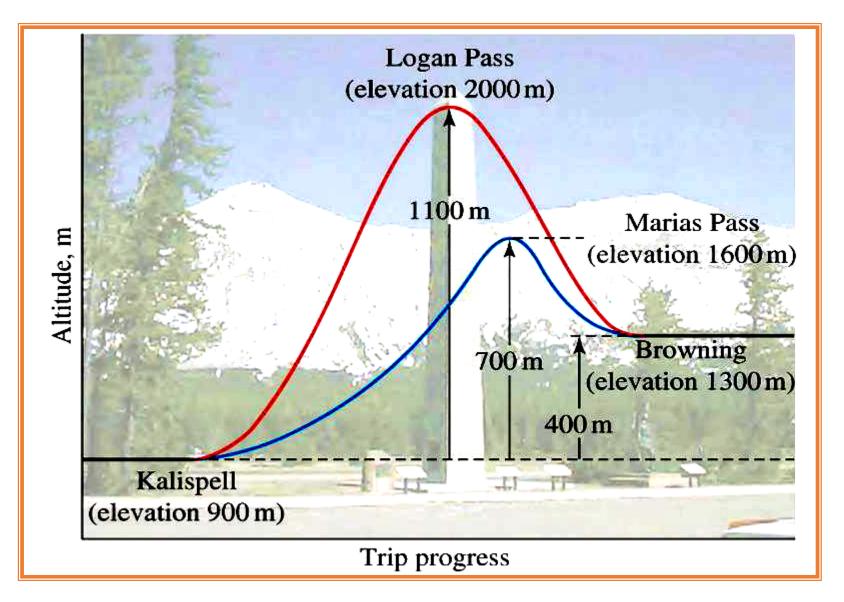
Step1:
$$NO_2 + NO_2 \rightarrow NO + NO_3$$
 rate = $k[NO_2]^2$
Step2: $NO_3 + CO \rightarrow NO_2 + CO_2$ rate = $k[NO_3][CO]$
 $NO_2 + CO \rightarrow NO + CO_2$

Step 1 would be the rate-determining step, because the rate matches the overall reaction rate.

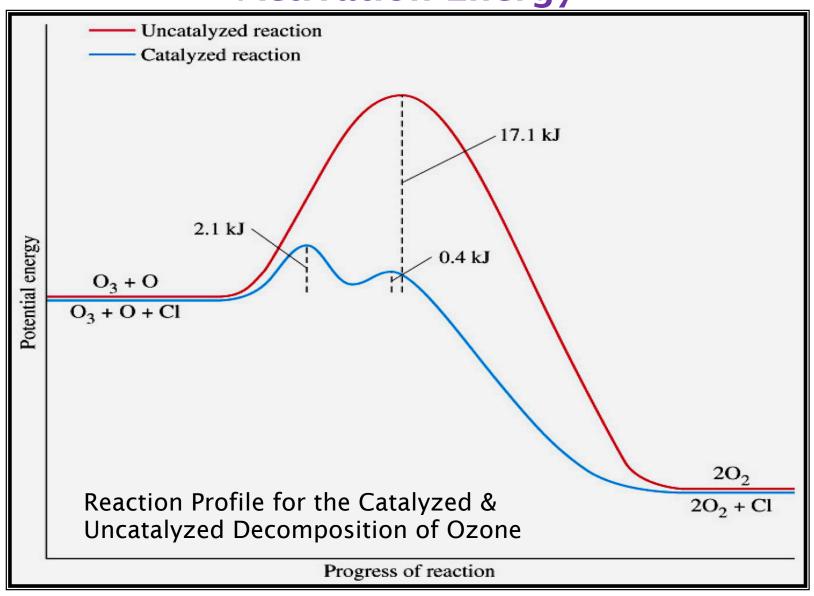
Catalysis

Catalysts alter the rate of a chemical reaction

- Not part of the overall reaction (not a reactant or product)
- Often work by lowering activation energy
 - Since less energy is needed, rate increases
- Materials that slow reaction rates are called inhibitors


Heterogeneous catalysts

- In a different phase than the reacting medium
- Solids often used to catalyze reactants in solution
- Often used as a surface to align molecules correctly
- Benefit often easy to remove & re-use


Homogeneous catalysts

- In the same phase as the reacting medium
- May have larger impact on rate (may be able to create a lower energy activated complex than heterogeneous)

Effect of a Catalyst on Reaction Profile & Activation Energy

Effect of a Catalyst on Reaction Profile & Activation Energy

Catalysis

Enzymes

- Control the rate of biological reactions
- Very specific
 - Only act on specific molecules called substrates
- Often proteins shape determines functionality
 - Partially due to hydrogen bonding (CHM101!)
- Some enzymes also act as inhibitors

When considering mechanisms:

- The rate constant of the elementary reaction that has a catalyst will be part of observed rate constant
- Catalysts in general (not just enzymes)

Summary

- Reaction rates are based on the rate of disappearance of a reactant or formation of a product.
- The order of a reaction determines the linear relationship between concentration & time.
- The half-life of a reaction is the time in which one-half of the reactant initially present is consumed.
- Chemical reactions occur when sufficiently energetic molecules collide in the proper orientation.
- Reaction mechanisms provide a plausible explanation of how a reaction proceeds.
- Reactions generally go faster at higher temperatures or in the presence of a catalyst. They slow down with an inhibitor.
- You do need to know more detail than this summary.