Chapter Seven

The Electronic Structure of Atoms

http://clipart-library.com

Wave Theory

Wave

Repeating disturbance spreading out from a defined origin
Characterized by wavelength, frequency and amplitude

Wavelength (λ)

- •Distance between identical pts
- •Units some form of meters

Frequency (v)

- •Number of waves that pass through a point in 1 second
- Units of cycles/sec or Hz

Amplitude

- Height of wave from center point
- Intensity of wave

Electromagnetic Radiation Electric field component

- Emission/transmission of energy
- In form of waves
- Has electrical & magnetic components
- Travels at the speed of light (c= 3.00 x 10⁸ m/s)

Using the relationship $c = \lambda v$: What is the wavelength of an FMradiowave with a 94.9 MHz frequency?

A: 3.16 m

4

Max Planck's Quantum Theory

Studied energy emitted by objects

• Amount of energy emitted was directly related to wavelength at which energy was emitted

Theory: Energy must be in discrete amounts.

- Amounts were defined by λ (& v they are related!) $E = hv = hc/\lambda$
- Can have multiples of these discrete amounts E = hv, E = 2hv, E = 3hv ...
- h = Plank's constant = 6.626 x 10⁻³⁴ J s

Called the smallest amount of energy a Quantum.

Didn't know why, but math worked over entire spectrum

Einstein and the Photoelectric Effect

Experiment to prove why E = hv

- Full spectrum of light hits metal surface
- Energy transferred to electrons in metal
- Electrons break free and escape to anode
- Flow of electrons recorded with voltmeter
- Light energy must be at or above a certain frequency to dislodge electrons

Conclusions:

- Light energy has wave properties: E = hv &
- Light energy has particle properties

Particles of light were later called "photons"

Using E = hv ($h = 6.626 \times 10^{-34} Js$) What is the energy of a radiowave with a frequency of 94.9 MHz? A: 6.29 x 10⁻²⁶J

What wavelength has an energy of 1.00 x 10⁻²⁰J? A: 1.99 x 10⁻⁵ m Or 19.9 µm

Using E = hv (h = 6.626 x 10⁻³⁴ Js)

What is the energy per photon and per mole of photons of violet light, with a wavelength of 415 nm?

> A: 4.79 x 10⁻¹⁹ J/photon A: 2.88 x 10⁵ J/mol

Elemental Line Spectra

Emission Spectra: Pattern of radiation that is emitted when photons are removed from a substance.

Procedure

- Add energy to an element
- Photons are emitted as a beam of light
- Separate wavelengths through a prism
- Record pattern on a photographic plate

Photon

n=1n=2

n=3

Continuous vs. Line Spectra

Continuous spectrum:

- Occurs when all visible light is present: white light

Line Spectrum

- Occurs when light is produced through an element
- Pattern of lines is characteristic of the element
- Can be used for identification of elements

Elemental Line Spectra

Bohr's Hydrogen Atom

Niels Bohr (1913): Electron energy (E_n) was quantized

- Only certain specified values allowed
- Stable levels called energy levels
- Photon absorbed/released when electron moves from 1 level to another The energy of each stable orbit: $E_n = -R_H/n^2$
 - *n* is the quantum number of the level
 - *n* is always an integer, 1,2,3,...etc.

Proportionality constant R_H

- Rydberg constant
- $R_{H} = 2.18 \times 10^{-18} J$

Leads to orbit description of atoms

Photon

n = 1

n = 2

n = 3

Energy Level Calculations

All calculations done by comparing energy levels

- Electron moves between levels
- E = $-R_H (1/n_f^2 1/n_i^2)$

Energy emitted or absorbed

High to low level:
energy released (-)

• Low to high level:

- energy absorbed (+)

Ground state: An e⁻'s lowest possible energy level Excited state: All other levels Calculate the wavelength of the electron shift from⁴ n = 4 to n = 2. Is light emitted or absorbed?

$$E = -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

$$R_{\rm H} = 2.18 \text{ X} 10^{-18} \text{ J}$$

A: $\lambda = 486$ nm Visible blue green light is emitted (neg E value)

Modern View of the Atom: Quantum Mechanics – a very brief intro

- (Nucleus in center, protons & neutrons in nucleus)
- Electrons outside nucleus
 - located in "cloud" surrounding the nucleus
 - likely location based on probability functions
 - quantum numbers used to describe probable location

Quantum Numbers and Atomic Orbitals

Atomic orbital

- A region in space with a high probability of finding an electron.
- Identified by 4 quantum numbers.

4 Quantum Numbers (think of it as a dorm address)

- 1. Principal quantum number (n): Building
- 2. Angular momentum quantum number (1) Floor
- 3. Magnetic quantum number (m_l)
- 4. Electron spin quantum number (m_s)

Room #

Bed

The Principal Quantum Number (n)

- Restricted to the positive integers: 1, 2, 3, 4, 5, 6, 7
- The shell or <u>energy level</u> of the orbital

- Indicates the size of the orbital
 - max distance e⁻ can travel from nucleus
- Integers correspond to <u>row numbers</u> in Periodic Table
 - row an element is in tells you the highest energy level in the ground state

35

The Angular Momentum Quantum Number (*l*)¹⁸

- Indicates orbital shape
 Designation: s, p, d or f
- Designates the subshell
 - Values range from 0 to n-1
 - 0-6 theoretically, but realistically 0-3
 - Give rise to "Blocks" in periodic table

Energy Level (n)	Math	Allowed <i>l</i> values	Orbitals
1	1 - 1 = 0	0	s only
2	2-1 = 1	0, 1	s & p
3	3-1 = 2	0, 1, 2	s, p, & d

Orbital Shapes = l quantum number

15

25

lanl.gov

 yz^2

 $z(x^2 y^2)$

35

 $x(x^2-3y^2)$

 $y(3x^2y^2)$

l = 0: s orbitals

- Spherical
- One per energy level
- l = 1: p orbitals
 - 2 teardrops joined at center **
 - Three per energy level

l = 2: *d* orbitals

- Most are like two p orbitals along different axes
- 5 per energy level
- *l* = 3: f orbitals.
 - Complicated shapes
 - 7 per energy level

The Magnetic Quantum Number (*m*_l):

Determines the orientation in space of the orbitals

- "orientation" refers to proximity to axes (x, y, z)
- Integers from *l* to + *l*
- Determines the <u>number</u> of orbitals in a subshell
 - The number of possible values for $m_{\ell} = 2\ell + 1$

Orbital	l value	Allowed m _l values	Number of Orbitals per Energy Level
S	0	0	1
р	1	-1, 0, 1	3
d	2	-2, -1, 0, 1, 2	5
f	3	-3, -2, -1, 0, 1, 2, 3	7

Orbitals with same n & l values are "degenerate"

degenerate = same energy

21

(Note: In some cases there are slight energy differences)

Possible quantum numbers for an electron in a 3p orbital:

n = 3

 ℓ can be 0 to 3-1 (0, 1, 2) BUT if it is a p orbital $\ell = 1$ m_{ℓ} can be $+\ell$ to $-\ell = -1, 0, +1$

Since the 3p orbitals are degenerate, any of the three m_l values could be correct

Electron Spin Quantum Number (m_s)

- A magnetic field is induced by the moving electric charge of an electron as it spins
 - Opposite spins cancel one another
 - No net magnetic field for the pair
 - Allows 2 electrons to occupy 1 orbital
 - Unpaired e⁻ lead to magnetism
- Two possible values: +1/2 and -1/2

S

Quantum Numbers Summary

TABL	E 7.2 Relation Between Quantum Numbers and Atomic Orbitals			d Atomic Orbitals
n	l	m _e	Number of Orbitals	Atomic Orbital Designations
1	0	0	1	1s
2	0	0	1	2s
	1	-1, 0, 1	3	$2p_x, 2p_y, 2p_z$
3	0	0	1	35
	1	-1, 0, 1	3	$3p_x, 3p_y, 3p_z$
	2	-2, -1, 0, 1, 2	5	$3d_{xy}, 3d_{yz}, 3d_{xz},$
				$3d_{x^2-y^2}, 3d_{z^2}$
•	•	41	72	
83 27		410 Alv	23	<u>4</u> 1¢ A1¢
•.2		•	(. .	•

Quantum Numbers & the Periodic Table

- Principle quantum number, n
 - Row number of periodic table, values of 1-7
- Angular momentum quantum number, *l*
 - Specific area of periodic table, spdf "blocks"
- Can follow the periodic table to fill e⁻ configuration
- Can use location on Periodic Table to determine where e⁻ configuration will end

1 <i>s</i>	Electrons in the outermost	1.5
2 <i>s</i>	energy level are the valence electrons.	2 <i>p</i>
35		3р
4 <i>s</i>	3d	4 <i>p</i>
55	4 <i>d</i>	5p
6 <i>s</i>	5 <i>d</i>	6p
7 <i>s</i>	6 <i>d</i>	7 <i>p</i>

4 <i>f</i>
5f

A possible set of quantum numbers for the last electron added to complete an atom of selenium would be:

n:

l:

m_l:

m_s:

Electron Configuration: Finding a home for each electron The energy of an electron is defined by both n & *l*

- Principle shells (size)
 n = 1,2, 3, 4 or 5
- Subshells (shape)
 - $\ell = 0, 1, 2, \text{ or } 3$
 - n determines number of subshells
 - s, p, d, f orbitals
 - <u>Shielding</u> impacts relative energies

Many-electron atom (f subshell not shown)

Rules & Principles Governing e⁻ Configurations²

Pauli Exclusion Principle:

• No 2 e⁻ in an atom can have the same set of 4 quantum #s

- If in the same orbital, e^{-} must have opposite spins $\uparrow \downarrow \uparrow \downarrow$

Hund's rule:

Electrons in the same subshell occupy degenerate orbitals singly, before pairing

- Degenerate = same energy

Ex: Oxygen, O Z = 8

 $\frac{\uparrow\downarrow}{1s} \frac{\uparrow\downarrow}{2s} \frac{\uparrow\downarrow}{2p} \frac{\uparrow}{2p} \frac{\uparrow}{2p}$

The Aufbau Principle:

- In general, each successive electron added to an atom occupies the lowest energy orbital available
 - There are some exceptions

 $(Z = 1) H = 1s^{1}$ (Z = 2) He = 1s² (Z = 3) Li = 1s²2s¹

1s

2s

Orbital Filling in Multi-electron Atoms

28

- Fill low to high energy
- 2 electrons per orbital
- Shielding impacts the energy of orbitals
- Use chart to account for overlap of n values 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s
- Format: spdf or orbital notation
- Ends when a home is found for each electron

Electron Configuration con't

- Defines the orbital ("home") for each electron
- # electrons = atomic number (Z) of atom (if neutral)
 - Max 2 electrons per orbital

Orbital Diagrams

- Energy increases from bottom to top

 Higher energy levels at top
- Boxes or lines represent orbitals
 - # lines at one level = # degenerate orbitals
- Arrows (1) represent e⁻
- 2 e⁻ allowed per orbital
 - one arrow up & one down
 to show the different spins

Formats for Electron Configurations

spdf Notation

- Front number = energy level
- Letter = type of orbital (s, p, d, or f)
 - Degenerate orbitals are combined together
- Superscript = # electrons in that type of orbital
 - Degenerate orbitals are combined, so the 1 superscript can be more than 2 if it is a p, d, or f orbital (p max 6, d max 10, f max 14)

Orbital Notation

- Number = energy level
- Letter = type of orbital
 - Degenerate orbitals are NOT combined
- Arrows = electrons
 - Put one e⁻ in each degenerate orbital before pairing
 - If 2 e⁻ in one orbital, one arrow must be up, the other down

Examples:

Ne: Z = 10 $1s^22s^22p^6$

Na: Z = 11 $1s^22s^22p^63s^1$

Example: C: Z = 6 $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\uparrow$ 1s 2s 2p 2p 2p

Writing Electron Configurations

Sulfur:

Vanadium:

Writing Electron Configurations for Ions Remove Electrons from Highest Energy Level First

Magnesium ion (Mg²⁺):

```
Fluorine ion (F<sup>-</sup>):
```

```
Manganese (II) ion (Mn<sup>2+</sup>):
```

Noble Gas Configuration

- Abbreviation of Electron Configuration (ex: Na: [Ne]3s1)
- Noble gas symbol replaces the portion of the e⁻ config. that is identical to the e⁻ config. of the noble gas.
- Always use the largest noble gas that is smaller than the element
- Can use for either spdf or orbital notation
- Will always start with an s orbital just not 1s.
- ex: Arsenic

regular configuration: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p³

• ex: Strontium

 Exceptions To The Aufbau Principle
 Half filled & filled subshells provide additional stability Cr and Cu ½ fill/fill their 3d shell before the 4s shell.
 Elements in same columns as Cr & Cu behave in same way. Similar behavior seen in p block.

Cr & Cu are the only exceptions you need to know.

			3 <i>d</i>	4 <i>s</i>	
	Sc	[Ar]	↑	† ↓	$[Ar]3d^{1}4s^{2}$
	Ti	[Ar]		† ↓	$[Ar]3d^{2}4s^{2}$
Cr: 3d ½ full & 4s ½ full	v	[Ar]	↑ ↑ ↑	↑ ↓	$[Ar]3d^{3}4s^{2}$
	Cr	[Ar]	† † † † †	1	[Ar]3d ⁵ 4s ¹
	Mn	[Ar]	† † † † †	↑ ↓	[Ar]3d ⁵ 4s ²
	Fe	[Ar]	†↓ † † †	↑ ↓	$[Ar]3d^{6}4s^{2}$
	Co	[Ar]	 † ↓ † ↓ † † †	↑ ↓	$[Ar]3d^{7}4s^{2}$
Cu: 3d full & 4s ½ full	Ni	[Ar]	† + + + + + +	↑ ↓	$[Ar]3d^{8}4s^{2}$
	Cu	[Ar]	† ↓ † ↓ † ↓ † ↓	1	$[Ar]3d^{10}4s^1$
	Zn	[Ar]	+	† ↓	$[Ar]3d^{10}4s^2$

Magnetism in Multi-electron Atoms

- +1/2 & -1/2 spins will cancel if electrons paired
- No magnetic properties without spin present
 - # unpaired electrons proportional to magnetic properties

Diamagnetic All electrons paired Ne: 1s²2s²2p⁶

$$5s - 4p - - \frac{4d - - - - -}{3d \ddagger 1 \uparrow 1 \uparrow 1}$$

$$4s \stackrel{!t}{=} 3p \stackrel{!t}{=} 1 \stackrel{!t}{=} 1$$

$$3s \stackrel{!t}{=} 3p \stackrel{!t}{=} 1 \stackrel{!t}{=} 1$$

$$2s \stackrel{!t}{=} 2p \stackrel{!t}{=} 1 \stackrel{!t}{=} 1$$

$$1s \stackrel{!t}{=} 1$$

Paramagnetic

At least 1 unpaired electron Fe: 1s²2s²2p⁶3s²3p⁶4s²3d⁶