Chapter Six

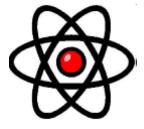
Energy Relationships in Chemical Reactions

Energy (U): Capacity to Do Work

Some types of energy:

- · Radiant
 - Energy from the sun

Energy = force x distance


 $= N \times m$

 $= kg m^2 / s^2$

 $= kg m^2 s^{-2}$

Nuclear

- Energy stored in the nucleus of an atom

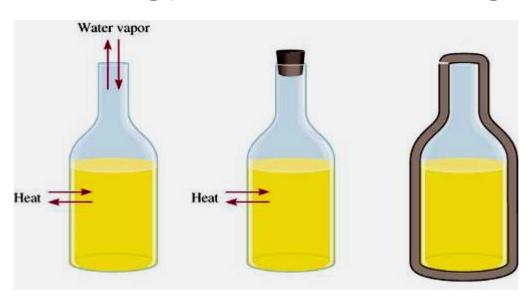
· Thermal

- Energy associated with temperature
- Type of <u>kinetic energy</u>: due to molecular movement

Chemical

- Energy stored in chemical bonds
- Type of <u>potential energy</u>: due to position of an object

Thermochemistry


Study of heat change in chemical reactions

System: The part of the universe being studied

Open: Energy & matter exchange with surroundings

Closed: Only energy exchange with surroundings

Isolated: No energy or matter exchange - rare

Surroundings: Part of the universe not being studied

Heat Transfer in a System

Heat (q): Transfer of energy due to temp. difference

Exothermic Reaction: System gives off heat (<u>Ex</u>iting)

Ex: Methane Burning: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Bonds stronger in $CO_2 + H_2O$ than in $CH_4 + O_2$

- Energy is absorbed when bonds break & released when bonds form
- In this case more energy released than absorbed
- Heat goes from system to surroundings

Endothermic Reaction: System gains heat (**En**tering)

Ex: Ice Melting: H_2O (s) $\rightarrow H_2O$ (l)

- Need energy to disrupt attractions between H₂O molecules
- Heat goes from surroundings into the system

Thermodynamics – Study of the conversions between heat & energy

State vs. Path Functions

State of a system:

- Δ = change
- Describes specific conditions/macroscopic properties
- Composition, temp., pressure, energy, volume
- ex: Potential energy of ball at the top of the mountain

State functions:

- Properties defined by Δ_{final} Δ_{initial} values only
 - → process doesn't matter
- ex: Height of mountain

Path functions:

- Δ_{final} Δ_{initial} values vary by process
- Heat, work: interdependent variables
- ex: the actual distance travelled by ball on its trip to the bottom of the mountain.

First Law of Thermodynamics

Energy can be converted from 1 form to another but cannot be created or destroyed

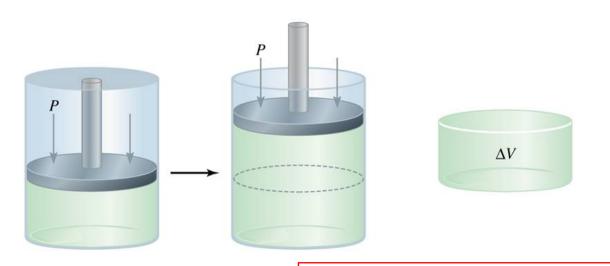
$$\Delta U_{system} = U_{final} - U_{initial}$$

Internal Energy of System: $U_{system} = U_{kinetic} + U_{potential}$

Kinetic energy: Amount of molecular motion Associated with temperature

Potential energy: Energy stored in bonds
Strength of chemical bonds

When studying a reaction, cannot separate kinetic & potential energy - measure total energy instead


For chemical reactions: $\Delta U_{reaction} = U_{products}$ - $U_{reactants}$

Internal Energy: Work and Heat

Energy transfer - caused by changes in heat & work in a system

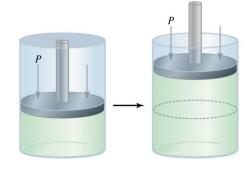
$$\Delta U_{system} = q + w$$

Work (w) = force x distance = -P ΔV

Work is needed to expand a system against its surroundings Negative work (-w): System loses energy to surroundings Positive work (+w): System gains energy from surroundings

Work (w) =
$$-P\Delta V$$

 $\Delta V = V_f - V_i$


For this situation: $+ \Delta V$

Therefore: -W

1 L x atm = 101.32 J

Work and Heat

A gas expands in volume from 2.000 L to 4.000 L at STP. 350.0 J of energy are needed to maintain the new conditions.

a. Calculate work (J) done against a vacuum & against a pressure of latm. (A = 0.000J, -202.6J)

*Note that work is reported in J, not L x atm.

b. Calculate the heat required for each system.

(A = 350.0 J; 552.6 J)

Enthalpy of Chemical Reactions

For systems at constant pressure (usually ~1atm):

$$\Delta U = q + w = q_p - P\Delta V$$

 $\Delta U = \Delta H + P\Delta V$

Enthalpy: (H) Experimentally measured & tabulated

- Can think of as heat of a reaction

At constant pressure:

 $\Delta H = \Delta U + P \Delta V$

Assume negligible volume change: $\Delta H = \Delta U = q_p$

There will be slight differences between ΔH and ΔU , but in many cases they are small enough to be considered negligible

9

Ways of Calculating Enthalpy/Heat/Energy exchange

$$q = ms\Delta T$$

$$q = C\Delta T$$

$$\Delta H = \Delta U + P\Delta V$$

$$\Delta U_{system} = q + w$$

$$\Delta U_{system} = U_{final} - U_{initial}$$

$$\Delta H_{reaction} = \Delta H_{products} - \Delta H_{reactants}$$

$$\Delta H_{reaction} = \Delta H_1 + \Delta H_2 + \Delta H_3 + \dots$$

To determine which formula to use - look at information given in the problem!

Why is there an enthalpy change during chemical reactions?

Theoretical Calculation: $\Delta H = E_{in} - E_{out}^{(Chapter 9)}$

$$CH_3CH_2OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$$

1140 kcal/mol

$$E_{in}$$
:

1 C-C bond x 80 kcal/mol = 80 kcal/mol

5 C-H bonds x 100 kcal/mol = 500 kcal/mol

1 C-O bond x 90 kcal/mol = 90 kcal/mol

1 O-H bond x 110 kcal/mol = 110 kcal/mol

3 O=O bond x 120 kcal/mol = 360 kcal/mol

E_{out}: 2x2 C=O bonds x 180 kcal/mol = 720 kcal/mol 3x2 O-H bonds x 110 kcal/mol = 660 kcal/mol

1380 kcal/mol

$$\Delta H = E_{in} - E_{out}$$

= 1140 kcal/mol - 1380 kcal/mol
= -240 kcal/mol

Enthalpy of Reaction ($\Delta H = q_{rxn}/mol$)

Amount of heat exchanged between system and surroundings during a chemical reaction

$$\Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}}$$

Exothermic Reactions

- Temperature increases in an isolated system.
- Heat released to surroundings is treated as a product
- ∆ H is negative

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) + 197.8kJ$$
 $\Delta H = -197.8kJ$

Endothermic Reaction

- Temperature decreases in an isolated system.
- Heat absorbed by system is treated as a reactant
- △ H is positive

197.8kJ + 2SO₃
$$\rightarrow$$
2SO₂(g) + O₂(g) $\Delta H = +197.8kJ$

State function: Independent of path

Rules for Working with Heat and Enthalpy

1. Make same changes to enthalpy as to # moles
If decrease or increase reactants and products, do the same for AH

$$2SO_{2}(g) + O_{2}(g) \rightarrow 2SO_{3}(g)$$
 $\Delta H = -197.8kJ$

$$1SO_{2}(g) + 1/2O_{2}(g) \rightarrow 1SO_{3}(g) \quad \Delta H = -197.8kJ/2 = -98.9kJ$$

$$\Delta H = -197.8 \text{ kJ /2 mol } SO_{3}(g) \quad \Delta H = -98.9 \text{ kJ /1 mol } SO_{3}(g)$$

2. Reverse the reaction, reverse sign of ΔH

$$2SO_3 \rightarrow 2SO_2(g) + O_2(g)$$
 $\Delta H = +197.8kJ$

These rules will allow you to calculate the AH for any amount of product or reactant

Calculate how much heat is required to decompose $15.0g\ NO_2(g)$ according to this reaction:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H = -114 \text{ kJ}$

Info Provided:

Calculate molar mass of NO₂ - convert mass to moles NO₂.

Use coefficient & moles NO_2 present to find ΔH for 15.0 g.

Calculating AH Via Experiment: Calorimetry

- Calorimetry: Measurement of heat changes
- Calorimeter: Device to measure heat (△T) produced by a chemical reaction
 - $\Delta T = T_{final} T_{initial}$
 - Units: generally °C

Specific Heat (s): Heat needed to raise T of 1 gram by 1°C.

• $s = q/(m \times \Delta T)$

- $s_{water} = 4.184 J/g^{\circ}C$
- Units: J/g°C or cal/g°C

 $= 1 \text{ cal/g}^{\circ}\text{C}$

Heat capacity (C): Quantity of heat needed to raise T by 1°C

- \bullet C = m x s
- Units: J/°C or J/K

Heat of Reaction (q_{rxn})

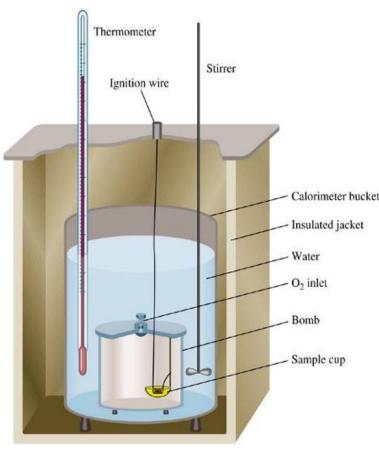
- $\mathbf{q} = \mathbf{m} \times \mathbf{s} \times \Delta \mathbf{T}$ or $\mathbf{q} = \mathbf{C} \Delta \mathbf{T}$
- Units: J

Commonly Used Specific Heats

Substance	Specific Heat (J/g·°C)
Al	0.900
Au	0.129
C (graphite)	0.720
C (diamond)	0.502
Cu	0.385
Fe	0.444
Hg	0.139
H_2O	4.184
C ₂ H ₅ OH (ethanol)	2.46

Calorimetry Experiments

During the experiment, heat is transferred from the reaction (system) to the water (surroundings)


- 1. Measure ΔT of water
- 2. Use $\mathbf{q} = \mathbf{ms}\Delta \mathbf{T}$ to calculate the heat gained or lost by the <u>water</u>
- 3. Heat gained by the water is lost by the system; heat lost by the water is gained by the system:

$$-q_{rxn} = q_{H2O}$$

4. Use q_{rxn} to determine information about system variables: $q_{rxn} = m_{sys} \times s_{sys} \times \Delta T_{sys}$

Always have 2 sets of variables!

- 1 for water (surroundings)
- 1 for reaction (system)

A 30.0g sample of metal is heated to 100.0° C by placing it in a boiling water bath. The metal is removed from the boiling water, and placed in 25.0g of water at 22.0°C. The final temp was 27.6°C, what is the specific heat of the metal? $S_{H2O} = 4.18 \text{ J/g}^{\circ}\text{C}$

What is your equation?

What info is provided?

Solve for q_{H2O} ($q_{H2O} = -q_{metal}$)

Use formula for q_{metal} to solve for s_{metal}

Heat Evolved During a Chemical Reaction

Reaction conducted in a Styrofoam cup calorimeter

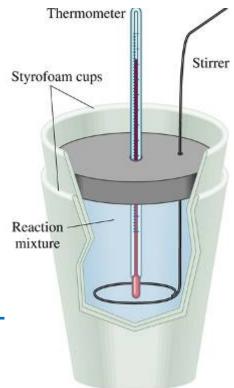
- The calorimeter does not absorb or give off heat.
- Heat absorbed by the solution in the calorimeter (q_{cal}) is the heat that has been given off by the chemical reaction $(-q_{rxn})$

Two solutions are mixed in the calorimeter Styrofoam cups

40.0 mL of 1.00 M KOH(aq)

 $40.0 \text{mL of } 0.500 \text{M H}_2 \text{SO}_4(\text{aq})$

 T_i of both solutions = 21.00°C


Data on final solution

Density: 1.02 g/mL

S.H.: 4.00 J/g°C

Volume: 80.0 mL

Temp.: 27.85°C

Calculate the enthalpy change, ΔH , of this reaction per mole of H_2O formed.

1. What is the chemical reaction?

2 KOH +
$$H_2SO_4 \rightarrow K_2SO_4(aq) + 2H_2O$$

$$\Delta H_{rxn} = q_{rxn} = -q_{water}$$

$$q = m \times s \times \Delta T$$

2. What information is given?

Initial Information: 40.0 mL of 1.00 M KOH(aq) 40.0 mL of 1.00 M H₂SO₄(aq) T_i of both solutions = 21.00°C

Final information:

Density: 1.02 g/mL Volume: 80.0 mL

S.H.: $4.00 \text{ J/g}^{\circ}\text{C}$ (not just $H_2\text{O}$)

Temp: 27.85°C

Note: ΔH calculated from calorimetry is heat that was transferred into the water in the <u>CALORIMETER</u>, not water from the chemical reaction!!! Amount of heat generated here is for grams of reactants used, not per mole H_2O ! Since you need ΔH per mole, you need to calculate how many moles of water you produced.

Calculating the ΔH per mole H_2O , con't

Calculate heat of reaction (q) from experiment. The calculated q_{H2O} will be per gram of reactants used.

Calculate the # of moles of water produced in the reaction. Need to find LR!

Calculate ΔH per 1 mole of water produced. Remember that $q_{H20} = -q_{rxn}$.

Typical Heats of Reactions

TABLE 6.3

Heats of Some Typical Reactions Measured at Constant Pressure

Type of Reaction	Example	ΔH (kJ)
Heat of neutralization	$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$	-56.2
Heat of ionization	$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$	56.2
Heat of fusion	$H_2O(s) \longrightarrow H_2O(l)$	6.01
Heat of vaporization	$H_2O(l) \longrightarrow H_2O(g)$	44.0*
Heat of reaction	$MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$	-180.2

Calculating ΔH_{rxn} Using Known Values: Standard Enthalpies of Formation (ΔH_f°) & Reaction ($\Delta H_f^{\circ}_{rxn}$)

The standard state of an element: $\Delta H_f^{\circ}=0$

- Pure element in its most stable form at 1 atm & 20°C
- Solvents in aqueous solution are at a concentration of 1 M ex: H₂(g) N₂(g) O₂(g) Cl₂(g) Br₂(l) Hg(l) Na(s)

 all have ΔH_f° = 0

The standard molar enthalpy of formation, ΔH_f°

- ΔH_f for 1 mol substance produced from elements in standard states
- Tabulated for compounds at 1atm and 20°C ex: $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H_f^\circ = -393.5 \text{kJ/mol}$

Calculation of ΔH_{rxn} Using Known Values

Calculating ΔH° of a chemical reaction

- $\Delta H^{\circ}_{rxn} = \Delta H_{f}^{\circ}$ products ΔH_{f}° reactants
- ex: $C(s) + O_2(g) \rightarrow CO_2(g)$
- Multiply each ΔH_f° by the stoichiometric coefficient for that species. Ex:

```
C(s) \Delta H_f^{\circ} = 1 \times 0 \text{kJ/mol} = 0 \text{kJ/mol}

O_2(g) \Delta H_f^{\circ} = 1 \times 0 \text{kJ/mol} = 0 \text{kJ/mol}

CO_2(g) \Delta H_f^{\circ} = 1 \times -393.5 \text{kJ/mol} = -393.5 \text{kJ/mol}

\Delta H_{rxn}^{\circ} = -393.5 \cdot (0+0) = -393.5 \cdot \text{kJ/mol}
```

*Note: If there are multiple reactants or products, you add the multiple ΔH_f° values before subtracting reactants from products. 24

Calculate ΔH_{rxn}° for the combustion of $C_2H_5OH(I)$ ΔH_f° values are given below

$$C_2H_5OH(I)+3 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$$

ΔH_f° Reactants:

 C_2H_5OH (I): -277.7 kJ/mol

 O_2 : 0 kJ/mol

Total reactants =

ΔH_f° Products

 $CO_2(g)$: -393.5 kJ/mol

 $H_2O(I)$: -285.8 kJ/mol

Total products =

 ΔH° = products - reactants

Hess's Law Of Constant Heat Summation: Another way to calculate ∆H

The heat of a reaction, ΔH , is constant, whether the reaction is carried out directly in one step or through a number of steps.

The equation for the overall reaction is the sum of two or more other equations (reaction steps).

$$\Delta H_{rxn} = \Delta H_1 + \Delta H_2 + \Delta H_3 + \dots$$

If you reverse a chemical equation, you reverse the sign of ΔH .

$$\Delta H_{forward} = -\Delta H_{reverse}$$

Hess' Law Example #1

What is $\triangle H$ when KOH(s) reacts with H₂SO₄ (aq)?

2 KOH(aq) + $H_2SO_4(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$

This is a 2-step process – dissolve KOH then neutralize – so need to use Hess' Law

Given information: Styrofoam cup calorimetry was used to determine the following:

Step 1. KOH(s) \rightarrow KOH(aq) ΔH_{sol} of KOH(s) = -58.4 kJ/mol

Step 2. Neutralization reaction ΔH per mole KOH = -55.9 kJ/mol

First: Need 2 mol KOH in rxn; must double given values.

Then: Add the Δ Hs for all steps of the reactions

Hess' Law: Using Info From Other Reactions

- 1. Find each reactant in an equation with known enthalpy
 - Use multiple equations if necessary to find all reactants
- 2. Find each product in an equation with known enthalpy
 - Use multiple equations if necessary to find all products
- 3. Add reactions to get the reaction you are looking for
 - Cross out items that are both products & reactants
 - stoichiometry matters, might not cross out all
 - Add multiples
- 4. Check final equation to make sure it matches the equation of interest.

Hess' Law Example #2

What is the enthalpy of the reaction between carbon and oxygen to form carbon monoxide?

2 C(graphite) +
$$O_2(g) \rightarrow 2$$
 CO(g) $\Delta H= ?$

You are given the following reactions with known enthalpies:

C(graphite) + O₂(g)
$$\rightarrow$$
 CO₂(g) $\Delta H = -393.5$ kJ

$$2 CO(g) + O_2(g) \rightarrow 2 CO_2(g)$$
 $\Delta H = -566.0 \text{ kJ}$

2 C(graphite) + O₂(g)
$$\rightarrow$$
 2 CO(g) $\Delta H= -221.0 \text{ kJ}$