Chapter 4

Reactions in Aqueous Solutions

Solubility Depends on Bond Type

Electronegativity – measure of atom's attraction for electrons

Electronegativity difference determines bonding type

Na•-Na⁺:Cl⁻ $H^+ \bullet O \bullet + H$

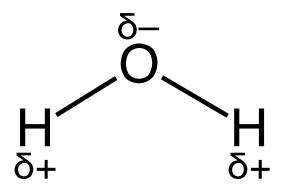
lonic:

- Large electronegativity difference
- Metal + nonmetal
- Transfer of electrons
 - Involves ions have charges!

Covalent:

- Moderate to small electroneg. diff.
- Often two nonmetals
- Electrons are shared
 - Atoms remain neutral not ions!
- Two kinds, polar and nonpolar

Covalent Bonds: Nonpolar vs Polar


Nonpolar - electrons shared equally

- very small/no electroneg. difference
- no partial charges

Polar – electrons shared unequally

- moderate electroneg. difference
- results in partially charged atoms (δ^+ or δ^-)
- water is polar

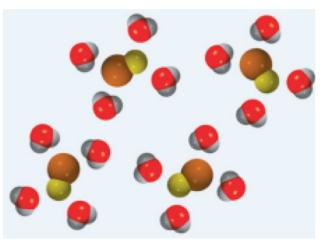
Like Dissolves Like!

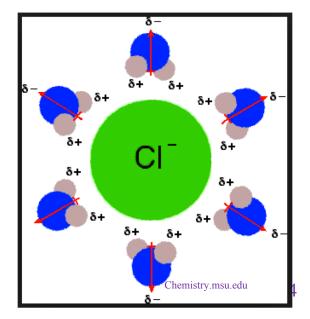
Solutions: Key Terms

•Homogenous mixture of 2 or more substances

Solvent:

Solution


- Component with largest amount
- Water, the "universal solvent"
 - is it truly universal?

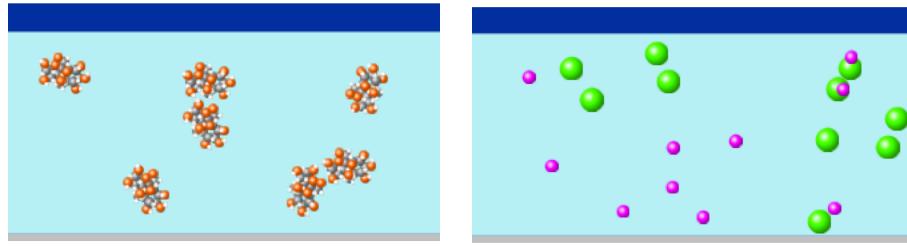

Solute:

 Components present in smaller amounts than the solvent

Solvation/dissolving:

- Solvent molecules surround & support solute molecules or ions
- Solvent is NOT part of chemical reactions

Dissolution vs Dissociation

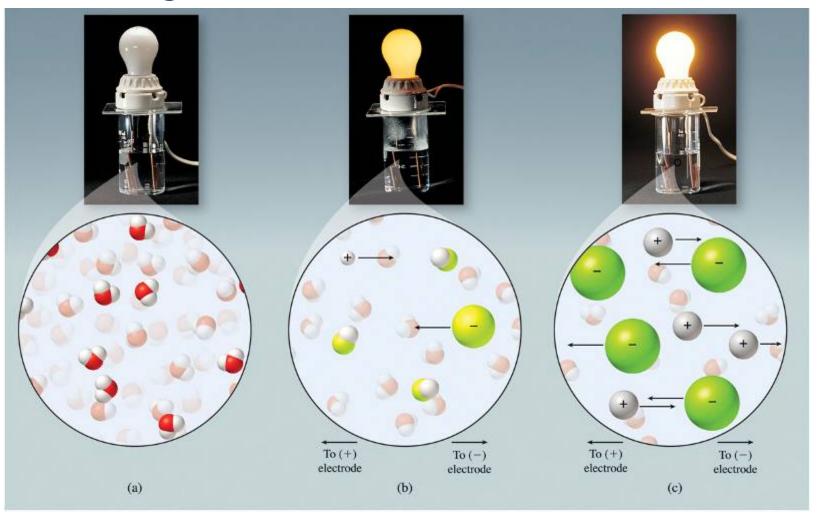

Ionic & Covalent Compounds Behave Differently

Sugar vs Salt

Dissolution vs Dissociation

Covalent Molecule

Ionic Salt



Dissolved sugar: • molecule remains together • NOT dissociation! Dissolved salt:ions separatedissociation!

Extent of dissociation/ionization impacts many properties - e.g. acid base strength, conductivity, freezing point

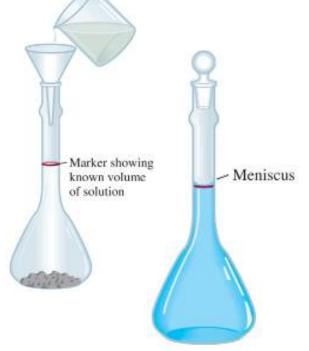
Conductivity of Electrolytes in Aqueous Solutions

Non-electrolyte Weak electrolyte Strong electrolyte No ionization Some ionization Full ionization Ex: sugar Ex: acetic acid Ex: NaCl

Concentration of Solutions: Molarity

Molarity (M) = moles solute/L solution

- Units: mol/L (molar, M)
- Conversion factor between moles solute & volume of solution.


How to prepare 2 liters of a 1.0M solution of NaCl:

1. Calculate mass of NaCl needed.

$$\frac{1mol_{NaCl}}{1L_{NaCl}} x \frac{58.5g_{NaCl}}{1mol_{NaCl}} x \frac{2L_{NaCl}}{1} = 117g_{NaCl}$$

2. Weigh out mass of NaCl.

- 3. Pour NaCl into volumetric flask.
- 4. Add water until the water reaches the 2L mark.

Molality

Molality (*m*)= moles solute/kg solvent

Units: mol/kg (molal, m) Based on mass, not volume, therefore: NOT TEMPERATURE DEPENDENT

How to prepare ~2 kg of a 1.0m solution of NaCl: 1. Calculate mass of NaCl needed.

 $\frac{1mol_{NaCl}}{\text{kg solv.}} \ge \frac{58.5 g_{NaCl}}{1mol_{NaCl}} \ge 2 \text{ kg solv.} = 117 g_{NaCl}$

2. Weigh out mass of NaCl.

3. Place NaCl into container.

4. Tare (zero) the container. Add water until you obtain the desired mass.

Molarity Calculations:

1. What is the concentration, in moles/L, if 22.8 g of potassium dichromate ($K_2Cr_2O_7$) is dissolved to make 500.0 mL of solution?

A: 0.155 M 10

2. How many grams of potassium dichromate ($K_2Cr_2O_7$) are needed to prepare 125 mL of a 1.83 M solution?

3. What volume of a 2.50 M solution of potassium dichromate ($K_2Cr_2O_7$) would contain 350.0 g of $K_2Cr_2O_7$?

A: 476 mL 12

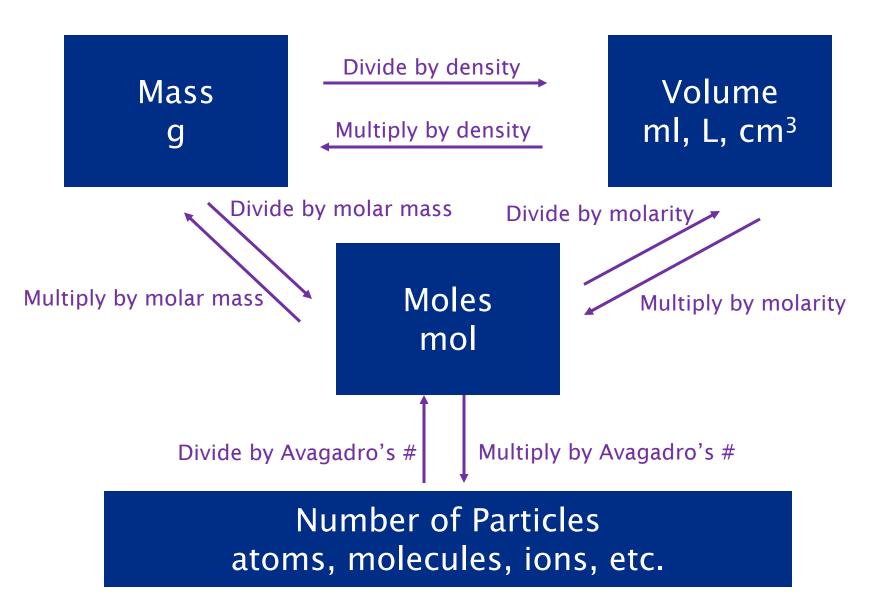
Dilution Calculations

Water is added to a small amount of stock solution to make a less concentrated solution.

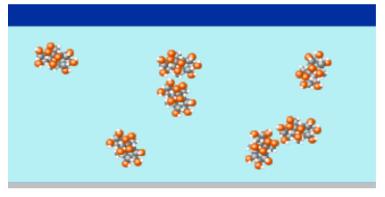
Addition of solvent does not change the mass or moles of solute in a solution but does change the solution

concentration.

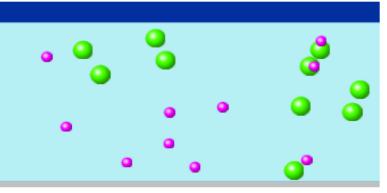
$$M_1V_1 = M_2V_2$$


(mol/L)(L)=(mol/L)(L)

Calculate the volume of 1.0M stock solution needed to make 2000.0mL of a 0.12M solution of HCl.


A: 240 mL 13

Conversion Relationships



Total Ion Concentration Can Be Higher Than Concentration of <u>Compound</u> in Solution

Covalent Molecule

Ionic Salt, ex. NaCl

Concentration: 7 molecules/jar Concentration: 10 NaCl units/jar 10 Na⁺ +10 Cl⁻ = 20 ions/jar

Calculating Ion Concentrations in Solution

What are the concentrations of aluminum ion, sulfate ion & nitrate ion in a solution that is 1.2 M aluminum sulfate and 1.0 M aluminum nitrate? A: 3.6 M SO_4^2 ; 3.0 M NO_3^2 ; 3.4 M Al^3 +

1. Write down how the salts dissociate in water.

2. Multiply concentration of each material by the number of ions it puts into the solution.

3. Add up ions if there is more than 1 source.

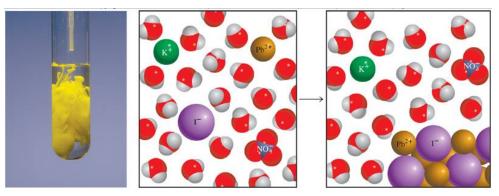
Mathematical Solubility Problems

What is the molarity of a sodium phosphate solution if adding AgNO₃ (aq) to 75.0 mL produces 0.205 g Ag₃PO₄ (s)?

- 1. Produce the balanced chemical equation.
- 2. Determine the amount of $Ag_3PO_4(s)$ in moles. MM = 418.5754 g/mol

3. Use moles of $Ag_3PO_4(s)$ to determine the moles Na_3PO_4 .

4. Calculate the molarity (mol/L) of Na_3PO_4 .


A: 6.53x10⁻³ M¹⁷

Types of Reactions: Precipitation Reactions

Precipitation: Ions in solution combine to form an insoluble solid salt

Precipitate: Solid salt that is formed

<u>Spectator lons</u>: lons that do not react in solution; they remain as ions

 $Pb(NO_3)_2 (aq) + 2KI (aq) \rightarrow PbI_2 (s) + 2KNO_3 (aq)$ $Pb^{2+}(aq) + 2NO_3^{-}(aq) + 2K^{+}(aq) + 2I^{-}(aq) \rightarrow PbI_2 (s) + 2K^{+}(aq) + 2NO_3^{-}(aq)$

Net ionic equation: $Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$

Writing Net Ionic Equations

 $Na_2CO_3(aq) + PbCl_2(aq) \rightarrow 2 NaCl(aq) + PbCO_3(s)$

Steps:

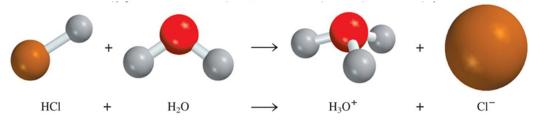
- 1. Write ions (all ions = total ionic equation)
- 2. Cross off species that are the same on both sides
- 3. Write net ionic equations using only species that have changed (changed: aq on one side, s, l, or g on the other)

$$Pb^{2+}(aq) + CO_3^{2-}(aq) \rightarrow PbCO_3(s)^{-19}$$

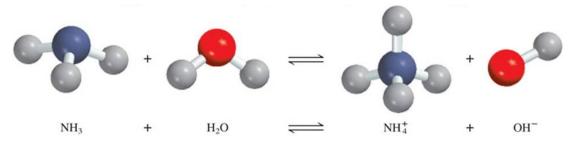
Solubility Rules for ions

Solubility rules classify compounds into those that usually are **soluble** and those that usually are **insoluble**.

Soluble	Ammonium (NH ₄ ⁺) Hydrogen (H ⁺) Alkali metals (gro Nitrate (NO ₃ ⁻) Perchlorate (ClO ₄ ⁻) Acetate (CH ₃ COO ⁻)	up 1A)	Always soluble	
Usually Soluble	Halides (F ⁻ ,Cl ⁻ ,Br ⁻ ,& I ⁻ Sulfate (SO ₄ ²⁻)	^{Pb²⁺, H}	ons (insoluble if g ₂ ²⁺ , Ag ⁺ g ₂ ²⁺ , Ag ⁺ , Ba ²⁺ , Ca	
Sparingly Soluble (Insoluble)	Sulfide (S ²⁻) Hydroxide (OH ⁻) Oxide (O ²⁻) Carbonate (CO ₃ ²⁻) Phosphate (PO ₄ ³⁻)	the cation	ons: if with any of ons listed in th soluble box	e 20


Determining Products of Precipitation Reactions BaCl₂ (aq) + Na₂SO₄ (aq) \rightarrow ?

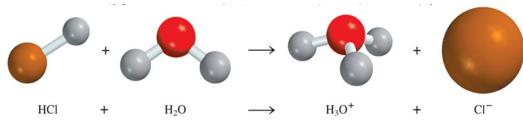
- 1. Divide reactant compounds into cations & anions
- 2. Match cation from one salt with anion from other salt Note: Always keep the metal on the left in salts!
- 3. Balance charges in salts to generate formulas
- 4. Write balanced equation
- 5. Use solubility rules to predict solubility of products


 $BaCl_2 (aq) + Na_2SO_4 (aq) \rightarrow 2 NaCl (aq) + BaSO_4 (s)^{21}$

Acid-Base Reactions Arrhenius Acids and Bases

Acid: Compound that ionizes in water to form a solution of H^+ ions (H_3O^+) and anions.

Base: Compound that ionizes in water to form a solution of OH⁻ ions and cations



Neutralization: Reaction between Arrhenius acid & base $H^+ + OH^- \rightarrow H_2O$ & cation + anion \rightarrow salt

Strength of Acids and Bases

Strong acids and bases

- •<u>Completely ionized</u> in water to give either H₃O⁺ or OH⁻
- Good conductors of electricity.
- Directional arrow (\rightarrow) indicates dissociation is complete

Weak acids and bases

- <u>Partial ionization in water, most of original compound</u> remains
- Poor conductors
- Double arrow (↔, ⇄) indicates dissociation is incomplete

OH-

Common Acids and Bases

Strong Acids	Weak Acids
HCI, HI, HBr	HF, HNO ₂ , H_3PO_4
HNO ₃	Acetic acid (CH ₃ COO <u>H)</u>
H ₂ SO ₄	Organic acids tend to
HClO₄	be weak

Strong Bases Weak Bases NaOH, KOH, LiOH $Ba(OH)_2$ Ammonia: NH₃

Other hydroxides (don't dissolve)

REMEMBER: FULL IONIZATION = STRONG

Acid-Base Neutralizations Strong acid with strong base NaOH (aq) + HCl (aq) \rightarrow NaCI (aq) + H₂O Na⁺ +OH⁻ + H⁺ + Cl⁻ \rightarrow Na⁺ + Cl⁻ + H₂O Net ionic equation: OH⁻ + H⁺ \rightarrow H₂O

Solid (weak) base with strong acid $Fe(OH)_3(s) + 3HCl(aq) \rightarrow FeCI_3(aq) + 3H_2O(l)$ $Fe(OH)_3(s) + 3H^+(aq) + 3Cl^-(aq) \rightarrow Fe^{3+}(aq) + 3Cl^- + 3H_2O$ Net ionic equation: $Fe(OH)_3(s) + 3H^+ \rightarrow Fe^{3+} + 3H_2O$

Weak acid with strong base

 $CH_{3}COOH(aq) + NaOH(aq) \rightarrow NaCH_{3}COO(aq) + 3 H_{2}O(l)$ $CH_{3}COOH(aq) + Na^{+}(aq) + OH^{-}(aq) \rightarrow Na^{+}(aq) + CH_{3}COO^{-}(aq) + H_{2}O(l)$ Net ionic equation: $CH_{3}COOH(aq) + OH^{-}(aq) \rightarrow CH_{3}COO^{-}(aq) + H_{2}O(l)$

Single Displacement Reactions $A + BC \rightarrow AB + C$ Relative Activites
with Water & Activites

Hydrogen Displacement

$$\overset{0}{\text{Ba}} \overset{1+2-}{(s)} \overset{0}{\to} \overset{2+2-1+}{\text{H}_2(g)} \overset{2+2-1+}{\to} \overset{0}{\text{H}_2(g)} \overset{2+2-1+}{\to} \overset{0}{\text{H}_2(g)} (\text{aq})$$

Metal Displacement

 $\begin{array}{ccc} 0 & 1+1- & 0 & 2+1-\\ Cu(s) + 2AgCl(aq) \rightarrow 2Ag(s) + CuCl_2(aq) \end{array}$

Halogen Displacement: $F_2 > Cl_2 > Br_2 > l_2$ ⁰ 1+ 1- ⁰ 1+ 1- $Cl_2(g) + 2KBr(s) \rightarrow Br_2(g) + 2KCl(s)$

Production of Bromine Gas

with Water & Acid Li→Li⁺ + e⁻ K→K⁺ + e⁻ React with cold Ba→Ba²⁺ + 2e⁻ water to produce H₂ Ca→Ca²⁺ + 2e⁻ Na→Na⁺ + e⁻ Ma→Ma²⁺ + 2e⁻ AI→AI³⁺ + 3e⁻ Zn→Zn²⁺ + 2e⁻ React with steam Cr→Cr³⁺ + 3e⁻ to produce H₂ Fe→Fe²⁺ + 2e⁻ Cd→Cd²⁺ + 2e⁻ Co→Co2+ + 2e-Ni→Ni²⁺ + 2e⁻ React with acids $Sn \rightarrow Sn^{2+} + 2e^{-}$ to produce H₂ Pb→Pb²⁺ + 2e⁻ H2→2H+ + 2e-Cu→Cu²⁺ + 2e⁻ $Ag \rightarrow Ag^+ + e^-$ Hg→Hg²⁺ + 2e⁻ Do not react with water or acids to produce H₂ Pt→Pt2+ + 2e-Au→Au³⁺ + 3e⁻

Silver Plating

Other Single Displacement Reactions: Activity Series

Li→Li ⁺ + e^{-} K→K ⁺ + e^{-} Ba→Ba ²⁺ + 2 e^{-} Ca→Ca ²⁺ + 2 e^{-} Na→Na ⁺ + e^{-}	React with cold water to produce H ₂ *Also react w/ steam & acid
$\begin{array}{l} Mg \! \rightarrow \! Mg^{2+} + 2e^{-} \\ AI \! \rightarrow \! AI^{3+} + 3e^{-} \\ Zn \! \rightarrow \! Zn^{2+} + 2e^{-} \\ Cr \! \rightarrow \! Cr^{3+} + 3e^{-} \\ Fe \! \rightarrow \! Fe^{2+} + 2e^{-} \\ Cd \! \rightarrow \! Cd^{2+} + 2e^{-} \end{array}$	React with steam to produce H ₂ *Also react w/ acid
$Co → Co^{2+} + 2e^{-}$ Ni → Ni ²⁺ + 2e ⁻ Sn → Sn ²⁺ + 2e ⁻ Pb → Pb ²⁺ + 2e ⁻ H ₂ →2H ⁺ + 2e ⁻	React with acids to produce H ₂
$Cu → Cu^{2+} + 2e^{-}$ Ag → Ag ⁺ + e ⁻ Hg → Hg ²⁺ + 2e ⁻ Pt → Pt ²⁺ + 2e ⁻ Au → Au ³⁺ + 3e ⁻	Do not react with water or acids to produce H ₂

Reactivity of 2 metals Higher metal replaces lower metal Higher metal becomes cation Lower metal will be free metal $Pb(s)+2CuF(aq) \rightarrow PbF_2(aq) + Cu(s)$ $Cu(s) + PbF_2(aq) \rightarrow NR$ **Reactivity with water** $Ca(s)+2H_2O(1) \rightarrow Ca(OH)_2(aq)+H_2(g)$ $Mg(s) + 2H_2O(g) \rightarrow Mg(OH)_2(aq) + H_2(g)$ $Fe(s) + H_2O(1) \rightarrow NR$

Reactivity with acid $Pb(s)+2HCl(aq) \rightarrow PbCl_2(aq) + H_2(g)$ $Pt(s)+2HCl(aq) \rightarrow NR_{27}$

Determining Products of Single Displacement Reactions

1.) Ba + CrCl₃ \rightarrow

- 2.) Ag + CrCl₃ \rightarrow
- 3.) F_2 + CrI₃ →
- 4.) Zn + HCl →
- 5.) Zn + H₂O (g) \rightarrow

Zn is +2 (this info would be provided if needed)

6.) Zn + H₂O (l) →

Must Know These Diatomic Molecules: H₂, F₂, Cl₂, Br₂, I₂, N₂, O₂ Oxidation-Reduction Reactions Oxidation-reduction reactions (REDOX reactions): • Occur when electrons are transferred from one reactant to another during a chemical reaction.

• There is a change in oxidation number for both substances

Oxidation State/oxidation number: Theoretical charge on atom

Oxidation - the process where the <u>oxidation number increases</u>. - Electrons are lost from the substance

Reduction - the process where the <u>oxidation number decreases</u>. - Electrons are gained by the substance

Oxidation and reduction always accompany each other; Neither can occur alone

920 × 690 - houstonchronicle.com

OIL RIG Oxidation Reduction Is Is Loss Gain

Oxidation Number Rules

The rule earlier in the list always takes precedence.

- 1.) Overall Ox # for a compound is zero
- 2.) Ox # = 0 for an element (not in a compound)

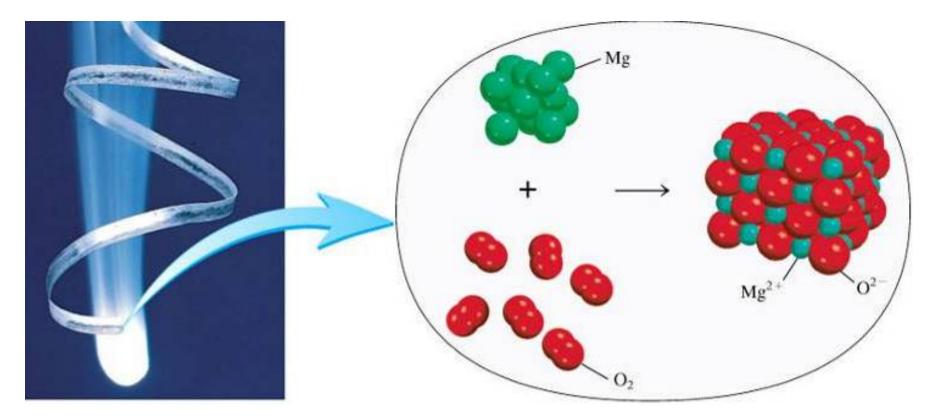
Ox # = ionic charge for an ion

- 3.) Ox # = +1 for IA elements & H (note: if w/metal H is -1)
- 4.) Ox # = +2 for 2A elements
- 5.) Ox # = -2 for oxygen (usually)
- 6.) Ox # = -1 for 7A elements (If both elements are in 7A, the one higher in the list is -1)
- 7.) Ox # = -2 for 6A elements other than oxygen
- 8.) Ox # = -3 for 5A elements (very shaky!!!)

Determining Oxidation Numbers Determine the oxidation number of each element in: NH_3 H_2O H_2O_2 NH_{4}^{+} NO_3^- If compound contains polyatomic ions, separate into ions before determining Ox. state of each element.

ex: NH_4NO_3

32


Is it REDOX?

$Zn(s) + 2 H_2O(g) \rightarrow H_2(g) + Zn(OH)_2$

$ZnCl_2(aq) + 2 NaBr(aq) \rightarrow 2 NaCl(aq) + ZnBr_2(aq)$

Redox Reaction: Half-reactions

Oxidation half-reaction: Reduction half-reaction: Sum of half-reactions: $Mg (s) \rightarrow Mg^{2+} + 2e-$ 1/2O₂(g) + 2e- \rightarrow O²⁻ Mg (s) + 1/2O₂(g) \rightarrow MgO(s)

Oxidizing and Reducing Agents

Oxidizing agent: reactant that promotes oxidation

- Oxidation = loss of electrons
- Oxidizing agent takes e^{-} from other species \rightarrow is reduced!
- Characteristic of nonmetals: ex: fluorine, oxygen.
- High electron affinity: easily gains electrons

Reducing agent: reactant that promotes reduction

- Reduction = gain in electrons
- Reducing agent loses $e^- \rightarrow is$ oxidized!
- Characteristic of an active metal, such as sodium.
- Low ionization energy: easily loses electrons

 $\begin{array}{ccc} 0 & 0 & +1 & -2 \\ 4 \operatorname{Na} + \operatorname{O}_2 \xrightarrow{} 2 \operatorname{Na}_2 \operatorname{O} \end{array}$

Na oxidized; is reducing agent O reduced; is oxidizing agent 35

Writing Half Reactions & Determining Oxidizing & Reducing Agents

1.) Ba + FeCl₂ \rightarrow BaCl₂ + Fe

oxidation:

reduction:

2.) $F_2 + 2 \operatorname{NaCl} \rightarrow \operatorname{Cl}_2 + 2 \operatorname{NaF}$

oxidation:

reduction:

Elemental Oxidation Numbers

1 1A 1 H +1 -1	8																18 8A 2 He
	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	
3 Li +1	4 Be +2											5 B +3	6 C ⁴ ² ⁴	7 X + 4 + 3 + 2 + 1 - 3	8 O ² + ¹ + ² + ² + ² + ²	9 F -1	10 Ne
11 Na +1	12 Mg +2	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B—	10	11 1B	12 2B	13 Al +3	14 Si +4 -4	15 P +5 +3 -3	16 S +6 +4 +2 -2	17 CT-500400-17	18 Ar
19 K +1	20 Ca +2	21 Sc +3	22 Ti +4 +3 +2	23 V +5 +4 +3 +2	24 Cr +6 +5 +4 +3 +2	25 Mn +7 +6 +4 +3 +2	26 Fe +3 +2	27 Co +3 +2	28 Ni +2	29 Cu +2 +1	30 Zn +2	31 Ga +3	32 Ge +4 -4	33 As +5 +3 -3	34 Se +6 +4 -2	35 Br +5 +3 +1 -1	36 Kr +4 +2
37 Rb +1	38 Sr +2	39 Y +3	40 Zr +4	41 Nb +5 +4	42 Mo +6 +4 +3	43 Tc +7 +6 +4	44 Ru +8 +6 +4 +3	45 Rh +4 +3 +2	46 Pd +4 +2	47 Ag +1	48 Cd +2	49 In +3	50 Sn +4 +2	51 Sb +5 +3 -3	52 Te +6 +4 -2	53 I +7 +5 +1 -1	54 Xe +6 +4 +2
55 Cs +1	56 Ba +2	57 La +3	72 Hf +4	73 Ta +5	74 ₩ +6 +4	75 Re +7 +6 +4	76 Os +8 +4	77 Ir +4 +3	78 Pt +4 +2	79 Au +3 +1	80 Hg +2 +1	81 TI +3 +1	82 Pb +4 +2	83 Bi +5 +3	84 Po +2	85 At -1	86 Rn

Types of Redox Reactions

Combination: $2Al(s) + 3Br_2(g) \rightarrow 2AlBr_3(s)$ $0 \qquad 0 \qquad +3 \ -1$ Decomposition: $2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$ $+1 \ +5 \ -2 \qquad +1 \ -1 \qquad 0$

Disproportionation (e.g. bleach production): $Cl_2(g)+NaOH(aq)\rightarrow NaOCl(aq)+Cl^-(aq)+H_2O(l)$

0 +1 -2 +1 +1 -2 +1 -1 +1 -2

Combustion: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ -4 +1 0 +4 -2 +1 -2

Single Displacement: $Cl_2(g) + 2KBr(s) \rightarrow Br_2(g) + 2KCl(s)$ 0 +1 -1 0 +1-1

No need to memorize – you can always just figure out the oxidation numbers! 38

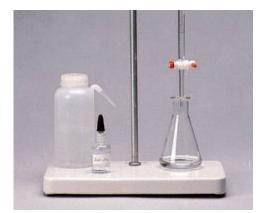
- 4. Use stoichiometry to determine moles and mass of chlorine, then determine %Cl.
- 3. Filter, dry, & weigh precipitate. 1.0882g AgCl(s) recovered
- $Aq^{+}(aq) + CI^{-}(aq) \rightarrow AqCI(s)$

Solution Based Experiments: Gravimetric Analysis

What is the mass % CI in a sample of unknown composition?

1. Dissolve known mass of an unknown sample in water.

0.5662g M_xCl_v dissolved in water $\rightarrow xM^+ + yCl^-$ 2. React unknown with Ag⁺ to form a precipitate.



Titration Reactions Used to determine acid/base [concentration]

- 1. To determine [acid], use known basic soln To determine [base], use known acidic soln
- React solution of known concentration
 w/ measured volume of unknown solution
- 3. Add known solution dropwise until **endpoint** of reaction
 - Ratio of reactants equals that in balanced equation.
 - For acid/base: moles H⁺ = moles OH⁻
 - Use an indicator to determine endpoint
- 4. Record volume of known solution needed to reach endpoint

5. Calculate molarity of unknown solution based on initial volume of unknown soln & molarity & volume needed for known soln.

Acid/BaseTitration

25.00-mL of 0.200 M (H_2SO_4) is titrated with 12.32 ml of a NaOH solution. What is the molarity of the NaOH solution?

1) Write the balanced equation

2) Determine # moles used of known solution (H_2SO_4)

3) Use balanced equation to get moles of unknown (NaOH)

4) Divide by volume of unknown to get molarity

 $M_{NaOH} = 0.812M_{41}$

Redox Titration

Determine the concentration (M) of a potassium permanganate (KMnO₄) solution if 25.32 mLs are needed to react completely with 7.24 g $Na_2C_2O_4$ (s).

 $2KMnO_4 + 5Na_2C_2O_4 + 8H_2SO_4 \rightarrow 10CO_2 + 8H_2O + 2MnSO_4 + 5Na_2SO_4 + K_2SO_4$ $Na_2C_2O_4 = 133.9992g/mol$

1.) Determine amount in moles of KMnO₄. (Stoichiometry!)

2.) Determine concentration of KMnO_{4.} (Molarity!)

