## Exam 1 is Tuesday October 1st

Make sure to have your ID with you.

You will be assigned an exam seat.

If you have any seating requests (left handed, aisle, etc.) email me by

Wednesday September 25<sup>th.</sup>

Take note of the make-up policy in the syllabus.

Requests for re-grading must be brought to my attention within 48 hours of the exam being handed back in class.

# Chapter 3

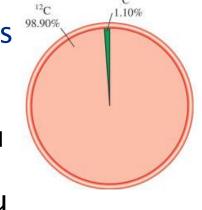
# Stoichiometry

# Atomic Mass, Avogadro's Number, & Molar Mass<sup>3</sup>

# **Average Atomic Mass**

#### Atomic Mass: Mass of an atom in atomic mass units

- = 1/12 of the mass of 1 C-12 atom
  - $\rightarrow$  The mass of a <sup>12</sup>C atom = 12 amu
  - $= 1.661X10^{-24} g$
  - = mass 1 proton or 1 neutron


#### Naturally occurring carbon is a mixture of isotopes

- <sup>12</sup><sub>6</sub>C 98.90% 6 protons 6 neutrons 12.000 amu
- <sup>13</sup><sub>6</sub>C 1.100% 6 protons 7 neutrons 13.003 amu

 $^{14}_{6}$ C ~  $10^{-12}$  6 protons 8 neutrons 14.003 amu (C-14 is unstable)

#### Atomic mass of naturally occurring carbon:

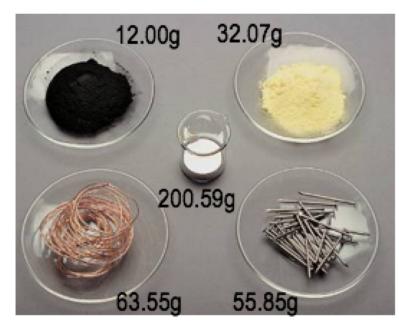
 $(0.9890 \times 12.000 \text{ amu}) + (0.0110 \times 13.003 \text{ amu})$ = Atomic Mass of C = 12.01 amu



Atomic

## **The Mole** – like a dozen but a lot more!

#### Mole


# of atoms in 12.00g of C-12

#### Avogadro's number (Na)

- # particles in 1 mole
- $N_a = 6.022 \times 10^{23} \text{ particles/mol}$
- Determined experimentally

#### Similar to the word "dozen"

Makes numbers more manageable



1 Mole of each substance

For most chemicals, a mole is an amount that can be measured in a lab (using a balance, etc.)

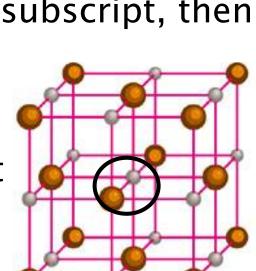
(Atoms are too small to measure on a balance)

C-12: 
$$\frac{12.00g}{1mole} x \frac{1mole}{6.022x10^{23} atoms} = 1.993x10^{-23} g/1atom$$

# **Molar Mass**

#### The mass of one mole of a substance

Equal to AMU, but in units of g/mol


## To calculate for a compound:

- Find atomic mass of each element
  - → located on Periodic table (often below symbol)
- Multiply atomic mass of element by subscript, then add all elements together.
- Molecular mass: mass of molecule
  - → include every atom
- Formula mass: mass of ions in a salt
  - → use smallest ratio

## **Examples:**

1 mol Na = 22.99 g/mol1 mol SO<sub>2</sub> = 64.07 g/mol

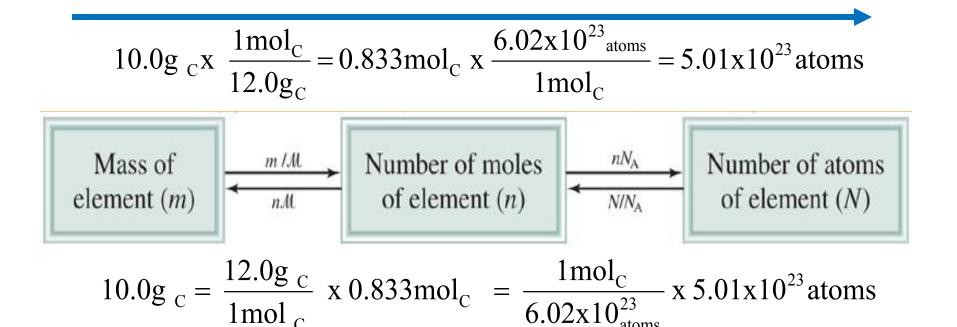
1 mole NaCl = 58.44g/mol



SO<sub>2</sub> - molecule

NaCl - ionic compound

# **Calculating Molar Mass**


1.) NaCl

2.) SO<sub>2</sub>

3.)  $Pb(NO_3)_2$ 

# Mole-based Calculations (Mass/Mole/Particle Conversions)

Molar Mass (*M*): grams/mol – from Periodic Table! Avogadro's Number N<sub>a</sub>: 6.022x10<sup>23</sup> particles/mol



# moles  $\rightarrow$  mass What is the mass, in grams, of 0.557 mol K<sub>2</sub>O? (52.5 g)

mass  $\rightarrow$  # moles How many moles are there in 25.64 g of K<sub>2</sub>O? (0.2722 mol) # moles  $\rightarrow$  # particles How many molecules are in 2.6 moles of CO<sub>2</sub>? (1.6 x 10<sup>24</sup> molecules)

# moles  $\rightarrow$  # particles How many ions are in 2.6 moles of NaCl? (3.1 x 10<sup>24</sup> ions)

# particles  $\rightarrow$  # moles ( $\rightarrow$  grams!)

If you have 2.5 x 10<sup>22</sup> atoms of gold, how many moles do you have? How many grams do you have? (0.042mol, 8.2g)

# **Combined!**

How many atoms are there in  $2.578 \text{ g of SO}_2$  (MM = 64.065 g/mol)?

Mass  $\rightarrow$  Moles  $\rightarrow$  Molecules  $\rightarrow$  Atoms

A: 7.270 x 10<sup>22</sup> atoms

# Percent Composition of Compounds by Mass (Mass % Compostion)

- General idea for percentages is "part / total"
- For mass %: mass of each element in the compound divided by the total mass of the compound
- Units should be the same for both values (usually g)

## To Determine the Mass % of a Compound:

- Assume 1 mole of compound.
  - This will make subscripts = # moles of each element
- Calculate molar mass of compound.
- Calculate mass of each element based on subscripts.
- For each element, divide mass by molar mass of compound

## **Mass % Compostion**



3 pieces Pepperoni (Pe) – 10. g per piece 2 pieces Cheese (Ch) – 9.0 g per piece 5 pieces Veggie (Ve) – 12 g per piece

Pe<sub>3</sub>Ch<sub>2</sub>Ve<sub>5</sub>

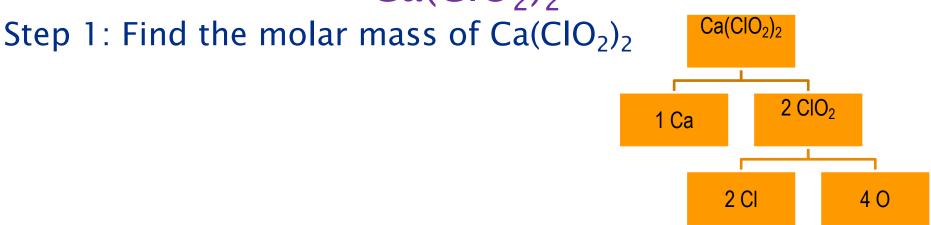
Total: 10 slices, 108 g

#### Percent by slice:

Pe: (3/10)\*100 = 30%

Ch: (2/10)\*100 = 20%

Ve: (5/10)\*100 = 50%


#### Percent by mass:

Pe: (30./108)\*100 = 27%

Ch: (18/108)\*100 = 17%

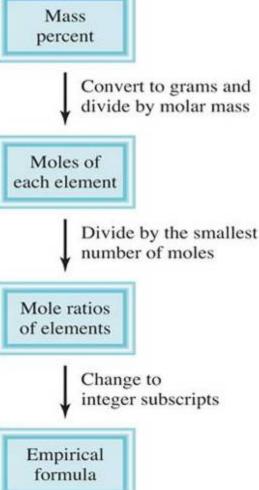
Ve: (60./108)\*100 = 56%

# Mass % Composition of Calcium Chlorite, $Ca(CIO_2)_2$

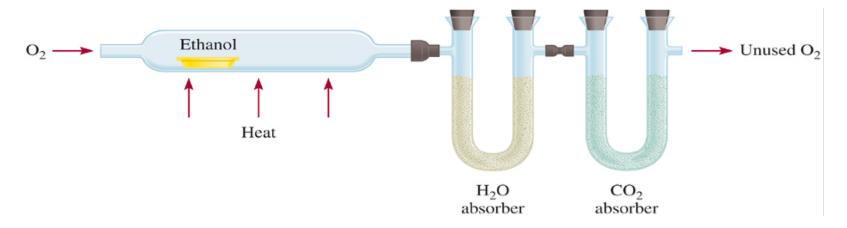


Step 2: Divide each elemental mass by the molar mass of  $Ca(CIO_2)_2$  (Total should equal approximately 100%)

## **Empirical Formulas from Mass % Composition**


What is the empirical formula for a compound with a mass composition of 2.2% H, 26.7% C, and 71.1% O?

Assume 100g, then can change % of each element to grams:


Convert grams of each element to mole:

Divide by smallest # of moles

Use integers for subscripts  $H_1C_1O_2 = HCO_2$  (empirical formula)



# Determination of Empirical Formulas by Elemental Analysis (Combustion)



- Burn measured amount of compound with excess O<sub>2</sub>.
  - $\circ$   $C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O + Unused O_2$
- Measure mass of products (must know what they are)
- Use mass of products to determine moles & mass of each element present
  - $\circ$  CO<sub>2</sub> and H<sub>2</sub>O contain all C and H atoms
  - Determine amount of oxygen by difference
- If know molar mass can determine molecular formula

A 0.595g sample of a CHO compound burns in  $O_2$  to produce 1.188g  $CO_2$  and 0.486g  $H_2O$ . What is the empirical formula?

$$C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O + Unused O_2$$
  
MM  $CO_2 = 44.01 \text{ g/mol}$  MM  $H_2O = 18.016 \text{ g/mol}$   
Determine Moles & Mass of C from  $CO_2$ 

Determine Moles & Mass of H from H<sub>2</sub>O

Determine Mass & Moles of O from what is left

Divide by smallest # moles to get formula:  $C_2H_4O$ 

## What If You Don't get Whole Numbers?



## Results from Empirical Formula Calculation:

$$C = 1.5$$

$$O = 1$$

$$H = 3$$

# Chemical Reactions & Chemical Equations: Chemical Equations

Shorthand description of a chemical reaction
Like a recipe!

Symbols & formulas represent elements & compounds

$$H_2(g) + 2C(s) + Cl_2(g) \rightarrow C_2H_2Cl_2(g)$$

# **Chemical Equations**

$$H_2(g) + 2C(s) + Cl_2(g) \rightarrow C_2H_2Cl_2(g)$$

Reactants: Starting substances on left: H<sub>2</sub>, C, Cl<sub>2</sub> Products: Substances formed on right: C<sub>2</sub>H<sub>2</sub>Cl<sub>2</sub>

Values in front of symbols: Stoichiometric coefficients
Coefficients = # moles of that substance
→ If there is no #, the coefficient is 1

+ sign: Think of it as "and"; not mathematical adding!

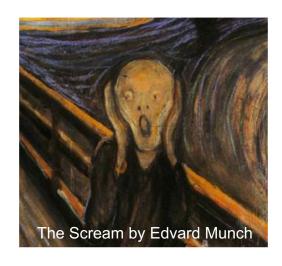
Arrow (produces, yields) – change from products to reactants  $\rightarrow$  Shows the direction of reaction ( $\rightarrow$ ,  $\leftarrow$ ,  $\leftrightarrow$ ,  $\Longrightarrow$  )

(g), (s), (l), (aq): chemical phase: gas, solid, liquid, aqueous

# Rules & Hints For Balancing Chemical Equations Cannot make something out of nothing!

- ONLY COEFFICIENTS CAN BE CHANGED!!! H<sub>2</sub>O ≠ H<sub>2</sub>O<sub>2</sub>
- If an element(s) is present in just 1 compound on each side of the equation, balance that element(s) <u>first</u>.
- Balance <u>free</u> elements <u>last</u>. (O<sub>2</sub>, C, H<sub>2</sub>, etc.)
- Fractions can be cleared at any time by multiplying all coefficients by a common multiplier (often denominator).
- $2 [C_4H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2O] \rightarrow 2 C_4H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2O$

• Groupings of atoms (such as in polyatomic ions) may remain unchanged. In such cases, you can balance these groupings as a unit.


# **Balancing Chemical Equations**

Starting - Unbalanced (no coefficients):

1.) 
$$H_2 + O_2 \rightarrow H_2O$$
 | 2.)  $C_2H_5O_2 + O_2 \rightarrow CO_2 + H_2O$ 

Balanced: 1.) 
$$2H_2 + O_2 \rightarrow 2H_2O$$
  
2.)  $4C_2H_5O_2 + 9O_2 \rightarrow 8CO_2 + 10H_2O$ 

# Amounts of Reactants and Products: Stoichiometry

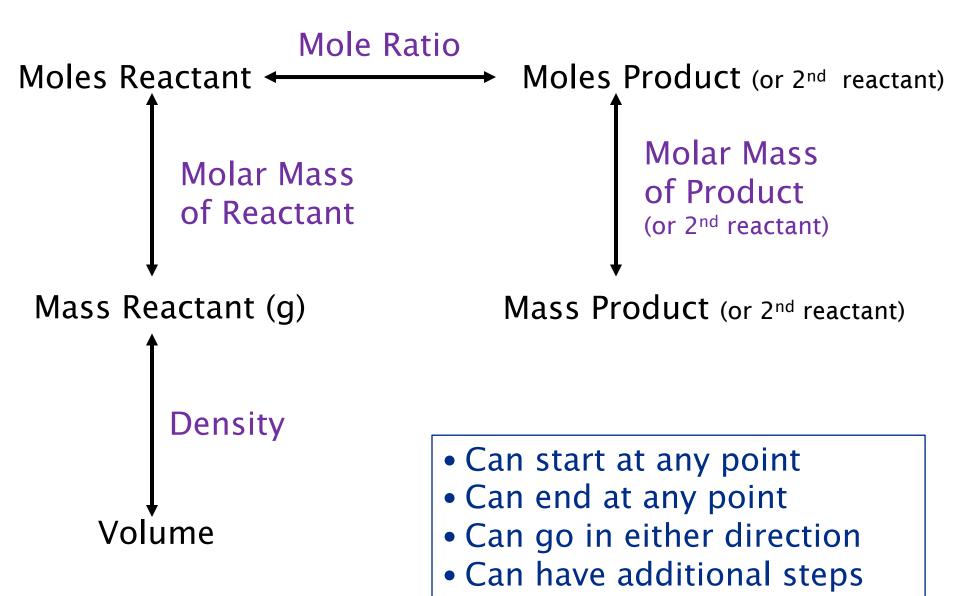


#### Calculations based on chemical reactions

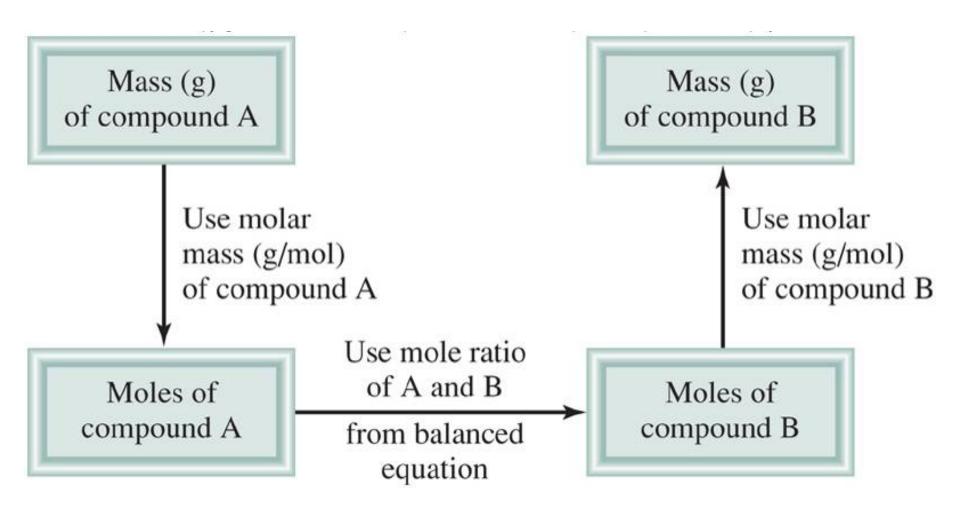
How much do you need to make what you want?

# Stoichiometry: Mole Ratios in Chemical Reactions




3 eggs and 2 cups of flour react to make one cake ratio: 3:2:1

$$2C(s) + 1Cl_2(g) + 2H_2(g) \Rightarrow 1C_2H_4Cl_2(g)$$

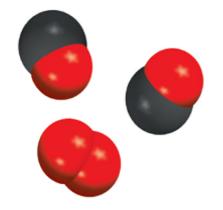

2 moles of graphite (carbon), 1 mole of chlorine gas, and 2 moles of hydrogen gas react to form 1 mole of dichloroethane

Mole ratio: 2:1:2:1

## **Stoichiometry Flow Chart**

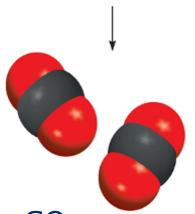


## **Stoichiometry Flow Chart 2**




# What is the mass of $CO_2$ produced when 10.7g of CO reacts with $O_2$ to form $CO_2$ ?

Write and balance the equation:


 $2CO(g) + 1O_2(g) \rightarrow 2CO_2(g)$ 

Calculate moles of CO (28.0104 g/mol) in 10.7g of CO. (0.38195)



Calculate moles of CO<sub>2</sub> from mole ratio.

(0.38195 mol)



Calculate grams  $CO_2$  (44.0098g/mol) from moles  $CO_2$ . (16.8g)

# Limiting Reagents & Reaction Yield:

- Limiting Reagent: Reactant that runs out first!
  - Determines how much product you can make
  - Find by calculating the moles of 1 product from each given amount of reactant
  - Limiting reagent is the reactant producing the <u>smallest</u> amount of product
- Theoretical Yield:
  - Max amount of product that you can make
  - Based on limiting reagent!
  - Generally reported in grams



| 12        | unlimited |  |
|-----------|-----------|--|
| unlimited | 12        |  |
| 12        | 12        |  |
| 12        | 6         |  |

$$Sb_4O_{10} + 6H_2O \rightarrow 4H_3SbO_4$$

If you start with 3.0 moles  $Sb_4O_{10}$  and 8.0 moles of water, what is your limiting reagent?

AgNO<sub>3</sub> + HCN ———

AgCN +

 $HNO_3$ 

If you make silver cyanide, which is used in electroplating, from 20.0 g of silver nitrate and 15.0 g of hydrogen cyanide gas, what is your limiting reagent? What is your theoretical yield of AgCN?

Step 1: Make sure equation is balanced.

Step 2: Moles of reactants - for limiting reagent, need both!

Why might you want to make either silver nitrate or hydrogen cyanide your limiting reagent?

Step 3: Cross the mole bridge. Limiting reagent produces smallest amount of product! (LR = AgNO<sub>3</sub>)

Step 4: Use the limiting reagent to determine the mass of AgCN.

(15.8 g)

# **Yields of Chemical Reactions**

Reactions rarely produce maximum product

- a. Impure reactants
- b. Incomplete reaction
- c. All product not fully recovered
- d. Side reactions may occur

Actual yield: Yield recovered during experiment

Theoretical yield: Yield calculated from limiting reagent

Percent yield = 
$$\frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100$$

2.01588 g/mol 28.0134 g/mol 17.0305 g/mol Step 1:  $3 H_2 + N_2 \longrightarrow 2 NH_3$ 

If you start with 4.00 g of hydrogen gas and 22.00g of nitrogen gas, and make 18.5 g of ammonia, what is your percent yield?

Step 2: Step 3:

Step 4:

Step 5: