Chapter 2: Atoms, Molecules, and Ions

The Atomic Theory

Proof atoms exist Laws of Chemical Combination

Atomic Theory of Matter: Dalton (1808)³

- 1. All matter is composed of tiny particles called atoms
- 2. All atoms of a given element are identical, but atoms of different elements differ in size, mass, & chemical properties

Fluorine atom: 18 amu

Hydrogen atom: 1 amu

3. Compounds are formed when atoms of different elements combine in fixed proportions.

4. A chemical reaction involves atomic rearrangement. No atoms are created or destroyed.

Law of Definite Proportions – Joseph Proust 1799 - Supports Part 3 of Atomic Theory

A compound will always have same chemical composition

• Each product is formed from definite proportions of reactants

• Same mass proportions & atomic ratios of elements present

Law of Multiple Proportions

If the same two elements can combine to form more than one compound:

• The **masses** of one element combine with a fixed mass of the second element.

• The combination is in a ratio of **small whole numbers**.

Open face sandwich 1 bread + 1 filling 1:1 ratio

Regular sandwich 2 bread + 1 filling 2:1 ratio

Carbon monoxide

Compounds are formed when atoms of different elements unite in fixed proportions

Law of Conservation of Mass

Total mass is constant during a chemical reaction Mass of reactants must exactly match mass of products

2lbs potatoes + 3 ounces milk + 1 ounce butter = 2.25 lbs mashed potatoes

Called mass balance

11.1g H₂ (g) + 88.9g O₂ (g) = 100.0g H₂O (l)

Matter cannot be created or destroyed in chemical reactions!

Structure of the Atom What's on the inside?!?

The Electron and Cathode Rays (1890's)

Electricity causes ray to be deflected in a vacuum Few molecules: minimal molecular interference Applied magnetic field or electric field deflects ray

Ray is attracted to positively (+) charged anode, so it must be made of negatively (-) charged particles Atom not smallest piece of matter – had charged "things" inside!

Millikan Oil Drop Experiment Determination of charge and mass of electron JJ Thompson: Ratio of cathode ray particle's charge to mass $= -1.76 \times 10^8 \text{ C/g}$ Negatively charged particle is called an **electron**

Robert Millikan Charge on an electron: $e = -1.602 \times 10^{-19} C$ Mass of an electron: $m_e = 9.10 \times 10^{-28} g$

Discovery of The Nucleus

J. J. Thomson's Raisin (or Plum) Pudding Model

- Positively charged sphere with electrons imbedded inside
- Ball of Chocolate Chip Cookie Dough

Rutherford's Experiments

• Shot α particles through gold foil

Results:

- Most hit detector w/ no interference (empty space!)
- Some deflected from straight line: Charge interference
- A few reflected back toward emitter
 - Hit something small & positive in center **Nucleus!**

(a)

10

The Atom and Sub-Atomic Particles Protons

11

large, positively charged particles in small central nucleus - Electrons -

tiny, negatively charged particles in cloud around nucleus
Neutrons

large, neutral particles in nucleus

Elements are not electrically charged

Must have equal numbers of protons & electrons

Neutrons

Subatomic particle with same mass as proton

- Discovered by James Chadwick
- Located in nucleus
- No charge accounts for extra mass of isotopes
- Change in mass, no change in chemical properties

Modern View of the Atom

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + [V_1(x) + iV_2(x)]\Psi$$

- Protons (p⁺) & Neutrons (n^o) in nucleus
- Electrons (e⁻) in "cloud" around nucleus
 - Exist in mathematically defined energy levels
 - Highest energy level electrons can travel furthest away from nucleus
 - Electrons in highest energy level are called <u>valence</u>
 <u>electrons</u>
 - Chemical reactions and bonding most often involve valence electrons.
 - Max number of valence electrons is 8 (an octet)
 - 8 valance electrons is stable (don't want to react)

Atomic Number, Mass Number, & Isotopes

Differences between atoms

Atomic Symbols

Atomic Number (Z)

<u># protons in a nucleus</u>

- Determines element identity Located lower left on symbol
- can also be used to
 determine # electrons in
 uncharged atom

Mass Number (A)

<u># protons + # neutrons</u>

- Determines isotope identity Located upper left on symbol
- use to determine # neutrons!

lsotopes

Elements with the same number of protons and electrons, but differing number of <u>neutrons</u>

Used in chemistry for structure identification or to follow a particular molecule through a reaction

Example: hydrogen and deuterium

NATIONAL LABORATORY

17

Mendeleev's Periodic Table 1869

Known elements arranged in order of increasing **atomic mass** from left to right and from top to bottom in groups.

Elements with similar properties are placed in same column.

	Н						
	1						
He	Li	Be	В	С	N	0	F
4	7	9	11	12	14	16	19
Ne	Na	Mg	Al	Si	Р	S	CI
20	23	24	27	28	31	32	35
Ar	K	Ca		Ge	As	Se	Br
40	39	40			75	79	80
Kr	Rb	Sr	In	Sn	Sb	Те	- 1
84	85	88	115	119	122	128	127
Xe	Cs	Ba	TI	Pb	Bi		
131	133	137	204	207	209		
Rn							
(222)							

Used table to predict properties of undiscovered elements!

Eka-Silicon —

MM: 72 Density: 5.5g/mL Color: dirty gray

Germanium

MM: 72.6 Density: 5.47g/mL Color: grayish white

The Modern Periodic Table

1 1A			A	Arra	ang	jed	l by	/ A	tor	nic	N	um	be	r			18 8A
1 H	2 2A						-					13 3A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	(113)	114	(115)	116	(117)	(118)
			$\overline{\ }$														
	Metals			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Metallo	oids		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	Nonme	tals			12 12									-			

Green Metals Blue Nonmetals Pink Metalloids Ductile, malleable, conductive, positive ionic charge Brittle solids, often gases or liquids, negative charge Properties of both metals and nonmetals

Some Groups in the Periodic Table

Elements you should be familiar with by the end of this course: (Name & Symbol)

First 4 rows of periodic table Including 1st row of transition metals

Additional elements

Ag: Silver Pb: Lead I: Iodine Hg: Mercury

(A Periodic Table with both names & symbols will be provided in this class, but you may be expected to know these in future chemistry courses.)

Chemical Formulas & Names

Sodium chloride

Types of Compounds

lonic:

- Cation + Anion
- Form from transfer of electrons
- Often metal + nonmetal
 - Elements that are very "different"
 - Opposite sides of Periodic Table
- Ex. NaCl (sodium chloride)
- Contain specific ratios of ions but no specific number of ions

Covalent:

- Form by sharing electrons
- Contain atoms, not ions
- Often nonmetal + nonmetal
 - Elements that are "similar"
 - Same side of Periodic Table
 - Hydrogen is a nonmetal
- Ex. CO₂ (carbon dioxide)
- <u>Molecules</u> contain specific numbers of atoms.

Chemical Formulas

Represent chemical composition (atomic ratios)

- Empirical: Ratio of atoms (NH₂ instead of N₂H₄)
 Can use for ionic or covalent compounds
- Molecular: Actual # of atoms (N₂H₄)
 Only use for covalent compounds. Molecule = covalent
- **Structural**: Shows how atoms are connected in <u>molecules</u>

	Hydrogen	Water	Ammonia	Methane
Molecular formula	H_2	H_2O	NH ₃	CH_4
Structural formula	н—н	н-о-н	H—N—H I H	$\begin{array}{c} \mathbf{H} \\ \mathbf{H} - \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \end{array}$
Ball-and-stick model	0-0			000

Names of Binary <u>Molecules</u> (2 Elements, Covalent)²⁵

Names and formulas have 2 parts, 1 for each element:

Dinitrogen tetroxide ------ N₂O₄

1st word is 1st element name ----- N = Nitrogen

 2^{nd} word is 2^{nd} element name \rightarrow change ending to "-ide" ------ O = Oxygen \rightarrow Oxide

Formula: Subscripts = # of atoms ----- N_2O_4

Name: Prefix = # of atoms ------ <u>Dinitrogen tetr</u>oxide

Do not include a prefix for the <u>first element</u> if there is only one atom

Ex: $CO_2 = Carbon dioxide$ (not monocarbon dioxide) CO = Carbon monoxide

Memorize prefixes up to 10

# atoms	prefix	# atoms	prefix
1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

Note that the o or a at the end of the prefix is often dropped when the element begins with a vowel.

- Monoxide, not monooxide
 - Tetroxide, not tetraoxide

Names & Formulas of Binary Molecules

1.) N₂O

2.) SCI₃

3.) P₂O₅

4.) nitrogen dioxide

5.) dinitrogen tetrasulfide

Ionic Compounds (salts)

During a reaction atoms may gain or lose electrons

- Both atoms become charged and are called **ions**
 - <u>Anion</u>: atom gaining the electron is negatively charged <u>Cation</u>: atom losing the electron is positively charged
- Will bind together to form crystals The net charge on the compound is 0
 - Cations & anions balance out
 - Get charges from periodic table
- No distinct molecular units
 - Positive charge of cation attracts all nearby anions
 - Negative charge of anion attracts all nearby cations

Using the Periodic Table to Predict Ionic Charge (Main Group Elements Only)

6	7	8	9	10
14	15	16	17	2
4A	5A	6A	7A	He

Goal: Get 8 valence electrons ("full")

- electrons in "outermost" energy level
- "A" column number tells number of valence electrons
- Noble gases (column 8A/18) already have 8 generally no charge
- Can gain or lose electrons to get 8 generally do what is easier
- Electrons are negative \rightarrow gain electrons = negative charge!

The correct charge is <u>usually</u> the smallest number

Left Side (metals):

Right Side (nonmetals): O^{6+} or O^{2-} F^{7+} , or F^{1-}

Li1+ orLi-7Mg2+ orMg6-Cations! O^{6+} or O^{2-} F^{7+} , or F^{1-} Anions!

Charges on Transition & Other Multi-charge Metals³⁰

Become cations

- Charge is unpredictable
- Often have more than one charge (also possible for some main group elements)
 - Designated with a Roman Numeral
 - Iron (III) = Fe^{3+} ; Iron (II) = Fe^{2+}
 - Roman numerals required in names of ionic compounds if cation can have more than one charge
 - Iron (III) oxide
 - Copper (II) chloride

Polyatomic lons

Charged molecules
Lose or gain electrons as a group
Charge is spread over 2 or more atoms

Memorize the following polyatomic ions!

Ammonium	NH_4^+	Hydronium	H_3O^+
Phosphate	PO ₄ ³⁻	Acetate	CH ₃ COO ⁻
Hydroxide	OH-	Nitrate	NO_3^-
Cyanide	CN⁻	Sulfate	SO ₄ ²⁻
Permanganate	MnO ₄ -	Chlorate	CIO ₃ -
Carbonate	CO ₃ ²⁻	Perchlorate	CIO ₄ -

Formula of an Ionic Compound must give an overall charge of zero!

- Al & O
- Ca & Br
- Na & CO₃
- Ca & NO₃

Pb⁴⁺ & O

Names of lons and lonic Compounds³³ Naming lons:

- For cations: add the word ION after element name
- Na = sodium
 - In col 1A, so loses 1 e⁻
 - Na⁺ = sodium ion

- Al = aluminum
 - In col 3A, so loses 3 e⁻
 - Al³⁺ = aluminum ion
- For anions: change the element name ending to -ide first
- CI = chlorine
 - In col 7A, so gains 1e⁻
 - Cl⁻ = chloride ion

- O = oxygen
 - In col 6A, so gains 2 e⁻
 - O^{2^-} = oxide ion

Naming Ionic Compounds (ie salts):

- Write the name of the cation followed by the name of the anion.
- If the cation can have more than one charge, include a Roman Numeral representing the charge after the name of the cation.

Na & Cl

```
Net Charge: (+1) + (-1) = 0
Chemical Formula is NaCl
```

Na = sodium Cl = chloride Name = Sodium chloride

Al & O

Net Charge: 2(+3) + 3(-2) = 0Chemical Formula is Al_2O_3

AI = aluminum

O = oxide

Name = Aluminum oxide

Fe & S Fe = iron -> 2 possible charges, +2 & +3 S = Sulfide -> charge is -2

If Iron is +2 Net Charge: (+2)+(-2) = 0 Chemical Formula is FeS Name = Iron (II) sulfide If Iron is +3 Net Charge: 2(+3)+3(-2) = 0Chemical Formula is Fe_2S_3 Name = Iron (III) sulfide

Naming Ionic Compounds

1.) K₂O
2.) CaF₂
5.) K₃PO₄

If the formula contains a cation that can have more than one charge, you need to determine the charge based on the anion & include it as a Roman Numeral.

6.) PbCl₂

3.) KF

7.) Fe₂O₃

Acids and Bases

<u>Acid</u>

- Arrhenius: Compound ionizes in H₂O to form H⁺ & anions
 - Name by changing anion -ide ending to -ic acid
 - Add hydro to acids with HX formula (X=halogen; col.17)
 ex: HCI = <u>Hydro</u>chloric acid
- Bronsted acids: H^+ grabs H_2O to form H_3O^+ in water

<u>Base</u>

- Arrhenius: Compound ionizes in H_2O to form OH^2 & cations
 - Name as salts: All hydroxide salts are considered bases
- Bronsted base: Pulls H+ from H₂O so NH₃ is a base: H₂O + NH₃ \Rightarrow OH⁻ + NH₄⁺ \Rightarrow NH₄OH

<u>Neutralization</u>

Reaction between acid & base – form water & a salt
 H⁺ + OH⁻ ⇒ H₂O and cation + anion ⇒ salt
 HCI + NaOH ⇒ H₂O + NaCI (aq)

Common acids and bases Be able to recognize & associate formula with name

Acids

Hydrochloric Acid:HClSulfuric Acid: H_2SO_4 Chloric Acid:HClO3Perchloric acid:HClO4

Carbonic Acid: Nitric Acid: Phosphoric Acid: Acetic Acid: H_2CO_3 HNO_3 H_3PO_4 CH_3COOH

Bases

Sodium hydroxide: NaOH Potassium hydroxide: KOH Ammonium hydroxide: NH₄OH (actually ammonia, NH₃ in H₂O) Lithium hydroxide: LiOH

Hydrates

Compounds associated w/fixed number of water molecules

Presence of water alters properties such as color

Copper(II)sulfate CuSO₄ Copper(II)sulfate pentahydrate

CuSO₄•5H₂O

Naming Hydrates

- Use numerical prefixes for # of water molecules
 mono, di, tri, etc.
- Add "hydrate" to the prefix & include at end of name
- A dot shows associated H₂O in formula Water molecules must be included when calculating mass

Naming Oxoacids and their Anions: <u>Reference Only</u>

