

The Modern Periodic Table

- Representative Elements: (main group elements)
 - Incomplete s or p shell determine elemental properties
- Transition metals d orbitals also play a role in bonding

I IA				Repres	entative Rs			Zinc Cadmi Mercur	im) Ty								18 8A
1 H	2 2A			Noble	pases			Lanthu	nides			13 3A	14 4A	15 5A	16 64	17 7A	2 He
ů.	4 Be			Transit metals	ion			Actinid	les			5 B	5 6 B C	7 8 N 0		° F	10 Ne
11 Na	12 Mg	3 38	4 48	5 58	6 68	7 7B	8		10	11 18	12 28	12 A1	14 81	15 P	16 8	37 C1	18 Ar
19 K	20 Ca	21 Se	22 11	23 V	24 Cr	25 Мя	26 Fe	27 Co	19 Ni	27 Ca	.30 Zn	31 Ga	32 Ge	33 As)i Se	35 Br	36 Kr
37 Rb	38 Sr	39 ¥	40 Ze	11 Nb	42 Mo	43 Te	44 Re	as Rh	an Pd	42 Ag	Cd	49 In	51 So	51 50	52 Te	.53 1	54 Xe
25 Cs	26 Ba	57 La	72 Jur	77 Ta	74 W	75 Re	76 Os	77 Ir	28	79 Au	30 Hg	n	S2 Pb	83 111	NA Po	85 AL	85 Rn
87 Fr	Ra Ra	89 Ac	tia Rf	103 Db	106 Sg	3117 Bib	108 Hs	109 Mit	110 Ds	111 Rg	112	(113)	114	(115)	110	(117)	(114)

20	yı	60	61	10	63	64	65	en	67	88	.09	30	71
	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tau	Yb	La
T	all Pa	90 U	93 Np	94 Pit	95 Am	95 Cm	97 Bk	98 59	90 Es	100 Fm	jöl Md	102 No	305 Le

Some Groups in the Periodic Table

Valence and Core Electrons Valence electrons:

- Highest energy shell (largest principle quantum #, n)
- Furthest from nucleus
- Outermost electrons
- Available for bonding
 - Determine the behavior of the atom

Core electrons

- Located on the inside in inner shells.
- Principal quantum number is lower

Example

Oxygen, O valence electrons Core electrons

Valence e⁻

 $1s^{2}2s^{2}2p^{4}$

TABLE 8.1

Electron Configurations of Group 1A and Group 2A Elements

Gr	oup 1A	Gro	oup 2A
Li	[He]2s ¹	Be	$[He]2s^2$
Na	[Ne]3s ¹	Mg	$[Ne]3s^2$
Κ	$[Ar]4s^1$	Ca	$[Ar]4s^2$
Rb	[Kr]5s ¹	Sr	$[Kr]5s^2$
Cs	[Xe]6s ¹	Ba	$[Xe]6s^2$
Fr	$[Rn]7s^1$	Ra	[Rn]7s ²

Effect of Valence Electrons on Elements

Octet Rule:

- Elements most stable with 8 valence electrons (2s + 6p)
- Noble gases have 8 valence electrons
 - No e⁻ want to be added or removed
 - Why they are so unreactive
- Main group elements form ions to become isoelectronic with the noble gases
 Same electron configuration
- He & H follow duet rule
 - 2 e⁻; too small for 8e⁻

Main Group elements – gain or lose s & p e⁻ to get 8 Transition metals – all form cations – remove e⁻ from s orbital before d orbital (ie 4s e⁻ lost before 3d e⁻)

Periodic Properties in Main Group Elements

	IA	1	-		10		-										Ì	2
1	H	ПА	Té	able	orPa	uling	Flec	trone	gativ	nty V	alue	S	ша	IVA	VA	VIA	VIIA	He
2	3 Li	4 Be	ĺ –										5 B	⁶ C	7 N	⁸ 0	9 F	10 Ne
3	1.0 11 Na	1.5 12 Mg											2.0 13 Al	2.5 14 Si	3.0 15 P	3.5 16 S	4,0 17 Cl	18 Ar
	0.9	1.2	IIIB	IVB	VB	VIB	VIIB		VIII-	_	IB	IIB	1.5	1.8	2.1	2.5	3.0	
4	19 K 0.8	20 Ca 1.0	21 Sc 1.3	22 Ti 1.5	23 V 1.6	24 Cr 1.6	25 Mn 1.5	26 Fe 1.8	27 Co 1.8	28 Ni 1.8	29 Cu 1.9	30 Zn 1.6	31 Ga 1.6	32 Ge 1.8	33 As 2.0	34 Se 2.4	35 Br 2.8	36 Kr
5	37 Rb 0.8	38 Sr 1.0	39 Y 1.2	40 Zr 1.4	41 Nb 1.6	42 Mo 1.8	43 Tc 1.9	44 Ru 2.2	45 Rh 2.2	46 Pd 2.2	47 Ag 1.9	48 Cd 1.8	49 In 1.8	50 Sn 1.8	51 Sb 1.9	52 Te 2.1	53 I 2.5	54 Xe
6	55 Cs 0.7	56 Ba 0.9	57 La	72 Hf	⁷³ Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl 1.8	82 Pb 1.9	83 Bi 1.9	84 Po 2.0	85 At 2.2	86 Rn
7	87 Fr 0.7	88 Ra 0.9	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112		114		116		_
1													,					
		La	nthan	ides	58 Ce	59 Pr	Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dv	67 Ho	⁶⁸ Er	69 Tm	70 Yb	71 Lu
		A	ctinid	les	⁹⁰ Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

6

Genchem1.chem.okstate.edu

Trends in the Periodic Table

Effective Nuclear Charge (Z_{eff})

- The attractive force felt by an electron in an atom
- Takes into account two things:
 - The actual nuclear charge (Z)
 - The repulsive effects of the other electrons (referred to as shielding effects)
 - Most shielding is due to core electrons
- Depends on size of nucleus & energy level

Trends in the Periodic Table

When looking at trends, consider 3 things:

- •Amount of positive charge in nucleus (Z)
- Distance of the electron from the nucleus (Energy level)
- Number of other electrons between the electron in question and the nucleus (Shielding)

Lithium

- 3 protons
- 2nd energy level
- 2 core electrons

Rubidium

- 37 protons
- 5th energy level
- 36 core electrons

Fluorine

- 9 protons
- 2nd energy level
- 2 core electrons

lodine

- 53 protons
- 5th energy level
- 46 core electrons

Sizes not exactly to scale

Atomic Radius

Atomic radius increases from top to bottom in a group/column

- Electrons are shielded from nucleus
- Previous shells blocks attraction
- Effective nuclear charge decreases
- Large size difference between shells

Atomic radius decreases from left to right across a row/period

- Little shielding as all electrons in same shell
- Effective nuclear charge higher as protons added
- Electrons pulled closer to nucleus

Ionic Radius

- Anions larger than atoms
 Low effective nuclear charge
 High effective nuclear charge
- More electronsMore repulsion

Fewer electronsLess repulsion

Ionization Energy

Energy needed to remove an e- from a gaseous atom or ion

$X(g) \rightarrow X^+(g) + 1e$ - Endothermic Process

Decreases top to bottom: Bigger atom = more shielding Increases from left to right: Atoms want to gain electrons

Ionization Energy con't

12

3rd ionization energy > 2nd > 1st:

- takes less energy to remove the first electron
- 2nd , 3rd, 4th, etc. electrons are held more strongly

Very large jump once all valence e⁻ have been removed

Ionization Energies of Aluminum

Elemental Ionization Energies

TAB	LE 8.2 TI	ne lonizat	ion Energi	es (kJ/mo	oi) of the Fi	rst 20 Ele	ments
Z	Element	First	Second	Third	Fourth	Fifth	Sixth
1	н	1,312					
2	He	2,373	5,251				
3	Li	520	7,300	11,815			
4	Be	899	1,757	14,850	21,005		
5	в	801	2,430	3,660	25,000	32,820	
6	С	1,086	2,350	4,620	6,220	38,000	47,261
7	N	1,400	2,860	4,580	7,500	9,400	53,000
8	0	1,314	3,390	5,300	7,470	11,000	13,000
9	F	1,680	3,370	6,050	8,400	11,000	15,200
10	Ne	2,080	3,950	6,120	9,370	12,200	15,000
11	Na	495.9	4,560	6,900	9,540	13,400	16,600
12	Mg	738.1	1,450	7,730	10,500	13,600	18,000
13	Al	577.9	1,820	2,750	11,600	14,800	18,400
14	Si	786.3	1.580	3,230	4,360	16,000	20,000
15	Р	1,012	1,904	2,910	4,960	6,240	21,000
16	S	999.5	2,250	3,360	4,660	6,990	8,500
17	CI	1.251	2.297	3,820	5,160	6,540	9,300
18	Ar	1.521	2,666	3,900	5,770	7.240	8,800
19	К	418.7	3,052	4,410	5,900	8,000	9,600
20	Ca	589.5	1,145	4,900	6,500	8,100	11,000

Electron Affinity

Energy released when an e⁻ is added to a gaseous atom

 $X(g) + 1e \rightarrow X^{-}(g)$

- Decreases top to bottom
- Increases left to right
- Fluorine at top right
 - small atom
 - limited shielding
 - nucleus relatively large compared to overall size

Exothermic Process

TABL	E 8.3	Electron Affinities (kJ/mol) of Some Representative Elements and the Noble Gases*										
IA	2A	3A	4A	5A	6A	7A	8A					
н							He					
73							< 0					
Li	Be	в	C	N	0	F	Ne					
60	≤ 0	27	122	0	841	328	< 0					
Na	Mg	Al	Si	P	\$	C	Ar					
53	≤ 0	44	134	72	200	349	< 0					
K	Ca	Ga	Ge	As	Se	Br	Kr					
48	2.4	29	118	77	195	325	< 0					
Rb	Sr	la la	Sn	Sb	Te	1	Xe					
47	4.7	29	121	101	190	295	< 0					
Cs	Ba	TI	Pb	Bi	Po	At	Ra					
45	14	30	110	110	2	2	< 0					

2nd electron affinities lower: Ion is already negative – doesn't want to add more negative charges

Electronegativity: measure of attraction for e⁻ in a chemical bond - follows similar trend; F has greatest electronegativity